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ABSTRACT OF DISSERTATION 
 
 
 
 

GROWTH PLATE REGENERATION USING POLYMER- BASED SCAFFOLDS 
RELEASING GROWTH FACTOR  

 
Currently growth plate fractures account for nearly 18.5% of fractures in children 

and can lead to stunted bone growth or angular deformation. If the body is unable to heal 
itself a bony bar forms, preventing normal bone growth. Clinical treatment involves 
removing the bony bar and replacing it with a filler substance, which causes poor results 
60% of the time.  

 
Using primarily poly(lactic-co-glycolic acid) (PLGA) as the scaffold material, the 

goal was to develop an implant that would support to the implant site, allow for cell 
ingrowth, and degrade away over time. Porous scaffolds were fabricated from PLGA 
microspheres using the salt leaching method. The first part of this work investigated the 
effect of sintering the microspheres by studying the mechanical properties, degradation 
and morphology and their potential applications for hard and soft tissue implants. Growth 
factor or drugs can be encapsulated into PLGA microspheres, which was the second part 
of this work. Encapsulated insulin-like growth factor I (IGF-I) was able to withstand the 
scaffold fabrication process without compromising it’s bioactivity and promoted cell 
proliferation. 

 
The next part of this work experimented with the addition of a hydrogel porogen. 

Porogen particles were made using a quick degrading poly(beta-amino ester) (PBAE) 
hydrogel and loaded with ketoprofen. The addition of the porogen creates a dual drug-
releasing scaffold with a localized delivery system.  

 
The final step of this work involved animal studies to determine the effectiveness 

of the scaffolds in growth plate regeneration and how they compare to the current clinical 
treatment option. Gross observation, microCT analysis, angular measurement of bone 
growth and histological methods were employed to evaluate the scaffolds.  

 
The goal was to develop a versatile scaffold that could be used for a wide range of 

tissue engineering applications. The mechanical properties, degradation profiles and drug 
delivery capabilities can be all tailored to meet the specific needs of an implant site. One 
specific application was regenerating the native growth plate that can also encourage the 
endogenous mesenchymal stem cells to follow the desire linage. By regenerating the 
native growth plate, angular deformation and stunted limb growth were greatly reduced.  
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Chapter 1 Introduction 

 Currently growth plate fractures account for nearly 18.5% of fractures in children 

(Mizuta et al., 1987).  Depending on the type of growth plate fracture and the severity it 

can lead to stunted bone growth or bone growth deformation. The current treatment 

options for growth plate fracture are removal of the bony bar and replacing it with a filler 

substance, such as, bone cement or fat, but still yield poor results 60% of the time 

(Basener et al., 2009). In previous work, poly(lactic-co-glycolic acid) (PLGA) scaffolds 

were developed and studied in vivo for the purpose of growth plate regeneration. Based 

on the results of that study, it was thought that an increase in degradation time and 

mechanical properties would be an improvement (Ravi, 2009). Additional findings 

showed that PLGA scaffold loaded with insulin-like growth factor I (IGF-I) increased the 

formation of neocartilage, and therefore, more research was performed to enhance this 

effect (Sundararaj et al., 2012). In this dissertation, PLGA scaffolds of varying molecular 

weight, fusion temperature and a novel hybrid scaffold were fabricated, characterized and 

implemented for growth plate regeneration, along with several reported drug delivery 

options. This work not only shows how PLGA scaffolds can be used for the treatment of 

growth plate injuries but how they can also be used in other soft and hard tissue 

applications.  

PLGA was chosen as the scaffold material since it has been shown to be 

biocompatible and biodegradable and is FDA approved for drug delivery devices. PLGA 

microspheres were fabricated using a double emulsion technique and then mixed with 

NaCl particles, compressed, heat sintered and leached to form a scaffold. The process of 

heat sintering was added in hopes of increasing the mechanical properties to be suitable 

for soft and hard tissue applications, which is discussed in chapter 1. Additionally, the 

effects of molecular weight on the morphology and degradation of the scaffold was 

evaluated. The scaffold also had the ability to incorporate chondrogenic growth factors 

(CGF) within the matrix. The growth factor helped to further promote and control 

desirable cell differentiation. Chapter 2 explored the drug delivery of IGF-I and the 

effects that scaffold fabrication had on the bioactivity.  



www.manaraa.com

	   2	  

A novel hybrid scaffold was fabricated by replacing the NaCl particles with 

hydrogel particles. The hydrogel porogen used was quick degrading, which ultimately 

result in a porous structure after a day, still allowing for cell ingrowth. They hydrogel 

system used a poly(β-amino ester) (PBAE), specifically the H6 system, based on the 

work of Anderson et al (Anderson et al., 2006). The effects that porogen loading had on 

the mechanical properties and morphology of the scaffold were investigated in chapter 3. 

Also in chapter 3, drug loading the scaffold while maintain bioactivity, and the results of 

the dual drug release study are discussed. This dual release may allow for enhanced 

treatment of a specific conditions or desired effect.  

Completing this work was an animal study using the developed scaffolds for the 

application of growth plate regeneration. Chapter 4 gives the details of the New Zealand 

white rabbit model of growth plate arrest used in this study (Lee et al., 1998; Li et al., 

2004), which mimics the problems seen clinically. The current treatment option involves 

resecting the bony bar and implanting a fat, silicon or bone cement as a space filler, in 

hopes of prevent bony bar regrowth (Lee et al., 1993). The problem with this approach is 

that it prevents the native growth plate from regenerating thereby preventing long bone 

growth. Other research groups have largely involved the use of mesenchymal stem cells 

(MSC), which requires an additional surgery to harvest the cells and additional time for 

culturing (Chen et al., 2003; Li et al., 2004; Planka et al., 2008; Tobita et al., 2002). The 

intention of this work was to regenerate the native growth plate, without the use of 

MSCs, resulting in restoration of normal bone growth better than the current clinical 

treatment options.   

 

 

 

 

 

 

 

 

Copyright	  ©	  Amanda	  Rachel	  Clark	  2013	  
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Chapter 2 Background and Significance  

With the end goal in mind, a scaffold is developed from the ground up. First the 

polymer must be selected. Each polymer can be tailored through altering the inherent 

polymeric properties until the best combination is reached. With keeping the polymer 

selection in mind, the various scaffold fabrication methods can be explored. Along with 

the scaffold fabrication, the option for drug delivery potential must be considered. With 

the selection made will then dictate the possible applications of the scaffold based on the 

degradation and mechanical properties and drug delivery.  

2.1 Biodegradable Polymers 

Biodegradable polymers have become a major area of focus within tissue 

engineering research. A biodegradable polymer that is also biocompatible has the ability 

to degrade in vivo without eliciting an adverse effect, which can be advantageous for 

fabricating medical implants. Polymers can possess the mechanical properties necessary 

to withstand non-load bearing physiological environment yet over time they degrade 

away, avoiding the need for a retrieval or replacement surgery. Depending on the 

fabrication methods, most degradable polymers can be used as a drug delivery carrier. 

The success of polymers as an implant material relies on understanding the benefits and 

limitations each specific polymer has in regards to the degradation and mechanical 

properties and drug delivery application. The most common polymers are 

polyanhydrides, polyorthoesters, polycaprolactone and polyesters. 

2.1.1 Polyanhydride 

 Polyanhydrides are characterized into three different classes based on the type of 

molecule used to connect the polymer backbone. Aliphatic, unsaturated and aromatic 

polyanhydrides offer variation in degradation and mechanical properties. Aliphatic 

polyanhydrides degraded within days as compared to the aromatic polyanhydrides that 

can take years to degrade (Agrawal et al., 2001; Uhrich et al., 1999). Regardless of the 

class, polyanhydrides degrades by surface erosion. Even though it degrades through 

hydrolytic cleavage the hydrophobic nature of the polymer prevents bulk degradation 

(Uhrich et al., 1999). Having the surface erosion, allows for a near zero-order drug 
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release (depending on the geometry) and a tailorable release time by altering the polymer 

composition (Rosen et al., 1983). In order to make polyanhydrides more applicable for 

orthopedic implants poly(anhydrides-co-imides) and crosslinked polyanhydrides have 

been developed to increase the mechanical properties (Attawia et al., 1995; Gunatillake et 

al., 2003; Muggli et al., 1998).  

2.1.2 Polyorthoester 

 Polyorthoesters (POE) have been divided into four families, which differ by the 

polymer backbone, reflected in the degradation (Heller et al., 2002). POE I uses ortho 

ester linkages that degrade through hydrolysis, increased by the autocatalyst of the 

degradation products (Heller et al., 2002; Uhrich et al., 1999). POE II has an additional 

diol in the structure that eliminates the autocatalyst and depending on the diol used, the 

mechanical and thermal properties can be adjusted (Heller et al., 2002).  POE III has a 

more flexible backbone and offers the advantage of being able to load drug into the 

polymer at room temperature without the use of solvents (Heller et al., 2002).  The most 

versatile of the POEs is family IV. It is a variation of POE II but it yields easily 

reproducible degradation and release results that can be varied from days to months 

(Heller et al., 2002).  

2.1.3 Polyester 

Polyesters are the most widely research and well-characterized polymers used for 

implants. Poly(lactic acid) (PLA) and poly(glycolic acid) (PGA) are both used on their 

own to fabrication scaffolds, but can also be combined to make poly(lactic-co-glycolic 

acid) (PLGA). These materials are already patented for surgical sutures or FDA approved 

drug delivery systems, such as, Lupron Depot®, Zoladex®, and Atridox®, for the 

treatment of prostate cancer, endometriosis, and fibroids (Schmitt et al., 1967). Ester 

linkages of lactic and glycolic acid units build the structure of PLGA. When the polymer 

is exposed to water these ester linkages undergo hydrolysis and the chains begin breaking 

down into shorter polymers until eventually it is broken down into lactic and glycolic 

acid units producing an alcohol and a carboxylic acid as the end groups (Houchin et al., 

2008). The degradation creates an acidic environment most concentrated at center of the 
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scaffold (or at places where the water cannot yet flow freely) and results in autocatalysis 

effect, which, further break down the ester links (Fu et al., 2000).  

In order to tailor the mechanical and degradation properties of a scaffold there are 

a few polymer properties that can be altered. The molecular weight can be adjusted, 

altering the length of the polymer chains (Clark et al., 2013). However, after the initial 

degradation, the longer chains can result in a larger build up of the acidic monomers, 

acting as an autocatalyst. This also reduces the pH in the center of the scaffold, which 

could cause degradation of any protein that might be loaded in the microspheres or 

potentially cause aseptic cysts (Fu et al., 2000; Meyer et al., 2012). Also, the ratio of 

lactic to glycolic units can be used to control the hydrophobicity since glycolic is slightly 

more hydrophilic and therefore increasing the degradation rate (Anderson et al., 1997; Lu 

et al., 1999; Tracy et al., 1999). Lastly, the end groups (methyl ester or carboxylic acid 

terminated) can be selected to alter the degradation since the carboxylic acid ended is 

more hydrophilic than the methyl ester ended, therefore increasing the degradation rate 

(Anderson et al., 1997; Tracy et al., 1999).  

2.1.4 Poly(β-amino ester)  

Poly(β-amino ester) (PBAE) is hydrogel biodegradable system. A large library of 

diacrylate and amines can be used to fabricate these polymers (Anderson et al., 2006). 

The macromer is synthesized through a step-wise reaction between the diacrylate and 

amine, which then undergoes free radical polymerization. Polymerization can be achieves 

using a chemical initiator or photopolymerization (Anderson et al., 2006). With 

photopolymerization a mask and laser technique can be used, adding spatial control to the 

areas that become polymerized. The molecular weight of the macromer can also be 

altered, changing the degradation and mechanical properties (Brey et al., 2008; Hawkins 

et al., 2011). Degradation occurs via hydrolysis of the ester linkages, therefore, the more 

crosslinks, the longer it will take to degrade.  

2.2 Scaffold Fabrication  

 Polymer scaffolds can be tailored to meet the needs for specific tissue engineering 

applications. Regardless of the application, there are several characteristics that the 

scaffolds most possess. First, the scaffolds must be biodegradable, ideally having a 
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degradation rate equal to the rate of tissue regrowth (Dhandayuthapani et al., 2011; 

Hutmacher, 2000). Tissue growth into the scaffold requires a porous structure that allows 

for cell to migrate into, where the cells can proliferation and remain active (Hutmacher, 

2000; Van Tienen et al., 2002). This porosity must be balanced with maintenance of the 

necessary mechanical properties to withstand the physiological conditions at the site of 

implantation (Hutmacher, 2000; Ikeda et al., 2009).  

2.2.1 Particle Leaching 

 During the fabrication process the polymer can be mixed with a particle that will 

act as a temporary porogen until removal, resulting in a porous scaffold. The polymer 

itself is commonly in the form of microspheres, while the temporary porogen may be 

NaCl (salt) crystals, sucrose or hydrogel particles (Dorati et al., 2010; Hawkins et al., 

2013; Hou et al., 2003; Kim et al., 2009). Tailoring the size and amount of the porogen 

particles controls the overall pore size and porosity of the scaffold (Hou et al., 2003). 

Once the polymer is mixed with the porogen particle the polymer must be solidified 

around the particles using one of several methods. One method is using solvent casting, 

where the polymer and salt are mixed with a solvent to create a lower viscosity solution 

(Mikos et al., 1994). Common solvents are methanol, acetone, chloroform, 

tetrahydrofuran, and dichloromethane that will evaporate over time and leave a solid 

polymer matrix (Liao et al., 2002; Mikos et al., 1993). A second option is using a 

sintering technique that fuses the polymer around the porogen microspheres together. 

Using temperatures above the glass transition temperature allows for the polymer chains 

to entangle with neighboring chains and solidify upon cooling (Brown et al., 2008; Clark 

et al., 2013). A third method is gas foaming, which saturates the polymer with CO2 using 

high pressure and then rapidly reducing the pressure (Harris et al., 1998; Mooney et al., 

1996; Nof et al., 2002; Park et al., 1998), thus making the gas instable and causes the 

polymer to expand and create a continuous matrix around the particles (Harris et al., 

1998; Mooney et al., 1996; Nof et al., 2002; Park et al., 1998). Gas foaming eliminates 

the use of solvents or high temperatures, which is advantageous when consider the effect 

they may have on drugs or proteins that would be used for drug delivery. However, this 

method lacks pore interconnectivity and requires the addition of salt-leaching to gain a 

more homogenous pore distribution (Liu et al., 2004). Lastly, the polymer can be 
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compressed around the porogen (Nof et al., 2002). Regardless of the method used to 

mold the polymer around the particle, the particle is removed by leaching the scaffold in 

water, yielding a porous structure (Liao et al., 2002).    

2.2.2 Emulsion Freeze Drying 

 Emulsion freeze-drying creates a homogenous solution of polymer mixed with 

solvent and water. This solution is molded into the desired shape, frozen and freeze dried, 

removing the water and creating a porous structure (Liu et al., 2004; Whang et al., 1995). 

A highly porous structure can be fabricated using this method, but lacks pore 

interconnectivity (Liu et al., 2004). 

2.2.3 Phase Separation 

 Phase separation involves mixing the polymer with a solvent at high temperatures 

to create a homogenous solution. The temperature is then reduced, the polymer becomes 

a solid and the solvent is either extracted or evaporates, leaving pores in the polymer 

structure (Liu et al., 2004; Schugens et al., 1996; Van de Witte et al., 1996). The 

advantage of this method is the high mechanical properties, reported to be up to 20 times 

greater than salt leaching technique (Liu et al., 2004). The disadvantage is the variability 

of the pore structure because it depends on many factors, such as, the polymer, solvent, 

polymer concentration and phase temperature (Liu et al., 2004).  

2.2.4 Solid Freeform Fabrication 

 Solid freeform fabrication (SFF) technology is a more recent development that is 

crossing over into biomedical applications in the past couple decades. This technology 

builds a 3-D structure in a computer aided design (CAD) software program and then 

constructs the scaffold layer by layer using one of several methods (Sachlos et al., 2003). 

The layers can be printed using a 3-D printer where a binding agent is printed onto 

powder, dissolving and adjoining the powder as directed by the CAD program (Bredt et 

al., 1998; Sachlos et al., 2003). Stereolithography uses a laser to selectively polymerize 

areas of each layer (Hull, 1990; Sachlos et al., 2003). Fused deposition modeling extrudes 

polymeric fibers to match the designated design of that layer (Scott, 1991), while 3-D 

plotting melts the polymer and uses compressed air to deposit a thin layer of material that 

cools upon contact with the previous layer (Landers et al., 2000; Sachlos et al., 2003).  
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The advantage to SFF methods is the precious it has to create varying pore sizes, 

distribution and concentration. SFF can also construct complex internal structures and 

easily reproducible. However, depending on the method used, solvents and/or high 

temperatures are required, which can be damaging to drugs or proteins loaded with the 

polymer. The mechanical properties of SFF constructs are usually poor due to lack of 

interconnectivity between the layers.  

2.3 Growth Factors 

 Growth factors can be used to interact with specific signaling cascades that create 

a favorable reaction. Growth factors can be used to regrow tissue by increasing cell 

proliferation and decrease apoptosis (Baserga et al., 1998; Rotello et al., 1991). 

Additionally, growth factors can be used to direct cells toward a desired cell lineage in 

order to generate a specific tissue type (Baserga et al., 1998). Growth factors even play a 

role in tissue repair and overall homeostasis (Li et al., 2008). Utilizing these mechanisms 

growth factors can be used for bone and cartilage regeneration (Nishida et al., 2004; 

Schmid, 1995). Combining the use of two growth factors has been researched as well to 

create multiple outcomes or to create a synergistic effect. For example, one study showed 

that using IGF-I with transforming growth factor β1 (TGF- β1) created a 20% increase in 

cartilage production over IGF or TGF alone (Fukumoto et al., 2003).  

2.3.1 Insulin-like Growth Factor  

The family of insulin, insulin-like growth factor I and II are common found in 

every organ system in the body (Flier et al., 1997). Insulin most commonly works in the 

liver, muscle, and adipose tissue, while IGF I and II act in all organ systems and 

embryotic development, however IGF-II is not well understood and isn’t as dominant as 

IGF-I (Flier et al., 1997).  Extensive knowledge exists on IGF-I (Flier et al., 1997), a 

growth factor used to increase cell proliferation and has been tested in vivo (Baxter, 

1994). It has been shown to stimulate the synthesis of proteoglycan and type-II collagen 

while enhancing chondrocyte matrix synthesis (Fortier et al., 1999; Schmid, 1995). In rat 

studies it was found to widen the tibial epiphysis, while increasing the levels of 

endogenous IGF-I (Schoenle et al., 1985). 
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IGF utilizes the phosphatidyl inositol 3-kinase (PI3 kinase) signaling pathway 

through binding a tyrosine kinase receptor and activates PI3 kinase intracellularly (Heng 

et al., 2004). This leads to the generation of second messengers Ins(1, 4, 5)P3 (IP3) and 

diacylglycerol (DAG) that can take several different actions. They can activate Ark 

signaling, shown to inhibit apoptosis, which further aids the cell survival of chondrocytes 

(Andres, 2010). The second messenger IP3 can diffuse into the endoplasmic reticulum 

where it triggers calcium release. This calcium release allows for DAG to bind protein 

kinase C (PKC) (Andres, 2010). PKC influences cell differentiation and has been shown 

to influese chondrogensis (Chang et al., 1998). IGF has also been shown to activate the 

mitogen-activated protein kinase (MAPK) pathway to increase cell proliferation (Choi et 

al., 2008; Weng et al., 2009).  

In studies performed by Fukumoto et al. IGF-I at low concentrations (5-10 

ng/mL) IGF-I did not cause a chondrogenic response (measured as % yield cartilage). 

Increasing the dosage to 100-500 ng/mL concentration a 25-30% yield cartilage increase 

was seen over the control (Fukumoto et al., 2003).  

2.3.2 Transforming Growth Factor β 

TGF-β is presented in literature to promote chondrogenesis (Shen et al.). An 

additional increase in chondrogenesis was seen when TGF-β was used in combination 

with IGF-I. IGF-I signaling has crosstalk with the pathways initiated by TGF-β 

(Sakimura et al., 2006). It is the SMAD signaling cascade that is initiated by TGF-β when 

the ligand binds to the TGF-β type II receptor and becomes activated. The receptor then 

recruits the type I receptor and goes through a series of phosphorylation and 

conformational changes until a tetramer is formed. The tetramer translocates into the 

nucleus and binds to the DNA directly or interacts with other transcription factors, such 

as, the Smad 3 transcription factor that inhibits cell maturation (Dennler et al., 2002; 

Ferguson et al., 2000; Pateder et al., 2001). Interaction with the transcription factors leads 

to increased presences of sox-9 and collagen type II and aggrecan production (Zeiter et 

al., 2009).  

TGF-β has been shown to cause an effect in as little as 2 days at a concentration 

of 10 ng/mL, resulting in an increase of 20% cartilage growth compared to no TGF-β 

treatment at all (Fukumoto et al., 2003). However, this study also showed that IGF-I (at 
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100 ng/mL) was just as effective as TGF-β (10 ng/mL) at the 6 week time point 

(Fukumoto et al., 2003). Overall, TGF-β and IGF-I have found to be equally as effective 

at inducing chondrogensis (Longobardi et al., 2006). 

2.3.3 Bone Morphogenetic Protein 

BMPs belongs to the TGF- β super family and have been shown to play a role in 

heart, neural and cartilage development but they are best recognized in bone formation 

(Chen et al., 2004). BMP-2 is already being used clinically in products such as 

Osigraft™, InFUSE™ and InductOs™, for the treatment of nonunions, degenerative disc 

disease, sinus augmentation and localized alveolar ridge augmentation (Cornell et al., 

1991; Inai et al., 2008; Martina et al., 2007; Pond et al., 1984; Ratner et al., 1996). Cell 

growth, differentiation and apoptosis can all be affected through the SMAD signaling 

pathway, activated by BMP-2 protein binding BMP-receptor type I and II (Nohe et al., 

2002). BMP-2 induces protein DLX3, which activates the transcription of Runx2, 

osteocalcin and alkaline phosphatase genes, which have all been shown to be a marker 

for osteoblastic activity (Hassan et al., 2006; Nohe et al., 2002; Wang et al., 2011). 

Osteocalcin can also be a marker for the presence of hypertrophic chondrocytes (Hanada 

et al., 2001). The effect of BMP-2 is also dose dependent over a very wide range (Kuhn 

et al., 2013; Laurencin et al., 2001; Patel et al., 2008; Riew et al., 1998; Whang et al., 

1998). Wang et al. saw a 2.8 and 60-fold increase in bone formation after 7 days over no 

BMP-2 treatment with a dose of 1.2 and 115.3 µg of BMP-2 (Wang et al., 1990). 

BMP has also been found to play a role in chondrogenesis (Hanada et al., 2001). 

While, BMP-2, -4 and -6 have all been shown to increase chondrogenic differentiation, 

BMP-2 is the most effective (Sekiya et al., 2005). Studies have shown that cells treated 

with BMP-2 induces the expression of aggrecan core protein and type II collagen 

(Hanada et al., 2001). A cellular response to BMP-2 has been seen (as measured by the 

overall Sox-9 expression) at concentrations as low as 10 ng/mL resulting in a 1.5 fold 

increase over the control. Up to a 4-fold increase was seen at a higher concentrations of 

200 ng/mL (Brown et al., 2008).   
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2.3.4 Alternative drugs - Glucocorticoids 

Another option for promoting chondrogenesis is the use of steroids, more 

specifically glucocorticoids (GCs). There are many types of GCs on the market already, 

including dexamethasone (DEX), used as an anti-inflammatory for arthritis patients and 

for allergic reactions (Ballock et al., 2003). Dex is already FDA approved by the brand 

names of Decadron or Ozurdex. It is known that GCs are required for chondrogenic 

differentiation of stem cells in vitro and was demonstrated using DEX (Derfoul et al., 

2006). It was further shown that using DEX along with TGF upregulate the production of 

collagen type II and cartilage oligomeric matrix protein. However, GCs can be inhibitory 

when given in high doses and cause apoptosis and gastrointestinal bleeding, so the dosage 

will need to be tightly regulated (Behrens et al., 1975; Cabre et al., 1998; Satterwhite et 

al., 1992).  

2.4 Applications of Polymeric Scaffolds in Medicine  

Polymeric scaffolds offer the biocompatibility and biodegradability properties that 

are desirable for soft and hard tissue implants, and they are a potential alternative to 

autografts, allografts or metal implants. Autografts and allografts can introduce infection, 

while metal implants can loosen, cause systemic problems, and/or require replacement 

surgery (Burg et al., 2000; Hallab et al., 2009; Törmälä et al., 1998). The tunable system 

of polymer systems makes it easy to meet the desired degradation and mechanical 

properties for soft and hard tissue implants. Some of the polymers have already been 

FDA approved for the use of drug delivery and sutures. 

Extensive research has been published on the many applications of biodegradable 

polymers. Studies have shown that polymers can be used for soft tissue, such as vascular 

grafts (Liao et al., 2007), skin grafts (Kim et al., 2005; Wake et al., 1996) and cartilage 

regeneration (Chen et al., 2004; Hutmacher, 2000), more specifically articular cartilage 

(Sherwood et al., 2002; Temenoff et al., 2000), fibrocartilage (Kang et al., 2006; 

Klompmaker et al., 1991), and hyaline cartilage (Chen et al., 2003; Freed et al., 1994; 

Lee et al., 1998; Sundararaj et al., 2012). Hard tissue applications are also a possibility 

for polymers in bone regeneration (Fujihara et al., 2005; Laurencin et al., 1996; Solheim 

et al., 1992; Thomson et al., 1996), specifically trabecular bone (Forcino et al., 2007) and 

cortical bone regeneration, both loading bearing (Ibim et al., 1998) and non-load bearing 
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placement (Hollinger et al., 1987).  

2.5 Specific Aims  

The work in this dissertation was guided by these specific aims: 

• Develop and characterize PLGA scaffolds with tuned structural and 

mechanical properties 

• Incorporate a growth factor into the scaffold and determine the bioactivity 

and efficacy in vitro 

• Develop a hybrid scaffold capable of releasing two drugs 

• Tailor the scaffolds to be suitable for cartilage (growth plate) regeneration 

and evaluate the in vivo response  

• Compare the results to current clinical treatment options and offer possible 

improvements for the future.  
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Chapter 3 Tailoring Properties of Microsphere-Based Poly(lactic-co-glycolic acid) 

Scaffolds 

3.1 Introduction 

Polymeric materials are commonly used to develop implantable scaffolds 

exhibiting a wide range of properties with varying applications. Biodegradable scaffolds 

are advantageous to the patient because there will be neither long-term foreign materials 

in their body nor additional retrieval surgeries required. Polymeric biodegradable 

scaffolds offer a beneficial scenario by providing the initial mechanical support needed at 

the site of implantation and then degrading away as the tissue regrows, allowing the body 

to heal naturally by creating an environment for cell proliferation and differentiation 

(Agrawal et al., 2001). The porous nature of the scaffolds further promotes tissue growth 

by allowing cell infiltration. Depending on the intended application, many polymeric 

scaffolds are loaded with proteins and/or drugs to enhance the overall effect. For 

example, the regeneration of bone or cartilage can be enhance with the addition of bone 

morphogenetic protein or insulin-like growth factor, respectively (DiCarlo et al., 2009; 

Govender et al., 2002; Madry et al., 2005; Nielsen et al., 1994; Stein et al., 2005; Wang et 

al., 1990). Fabrication methods may be limited, however, based on the processing steps 

used to make the scaffold, such as elevated temperatures, compression, or solvents used, 

that can be harmful to the encapsulated molecules (Arakawa et al., 1991; Fernández‐

Martín et al., 2000; Hofmann et al., 1995).   

Poly(lactic-co-glycolic acid) (PLGA) and similar polymers, such as poly(glycolic 

acid) (PGA) and poly(lactic acid) (PLA), are used in FDA-approved drug delivery 

systems, including Lupron Depot®, Zoladex®, and Atridox®, applied to treatment of 

prostate cancer, endometriosis, fibroids, and periodontal disease. Additionally, these 

materials are extensively investigated for tissue engineering and other controlled release 

applications, with increasing emphasis on nanostructures (e.g., reviewed in (Burdan et al., 

2009; Pattison et al., 2005; Prasad et al., 2008; Wu et al., 2001)).  PLGA is biodegradable 

and can exhibit biocompatible properties, such as minimal inflammation at the 

implantation site and minimal presence of foreign body giant cells, that make it suitable 

for tissue engineering purposes (Kitchell et al., 1985; Shive et al., 1997). PLGA is 

commonly used in the form of microspheres having tunable properties by altering the 
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polymer molecular weight, the ratio of lactic to glycolic acid, or the end group. In recent 

years, microspheres have been fabricated into scaffolds having a variety of degradation 

and mechanical properties using sintering, solvent casting with particle leaching, or 

sphere-templating processes (Brown et al., 2008; Jabbarzadeh et al., 2012; Linnes et al., 

2007; Lo et al., 1995; Mikos et al., 2000). 

Once microspheres are fabricated, they can be made into scaffolds with specific 

properties by controlling the type(s) of microspheres used. Pore size, porosity and 

mechanical properties can be tailored using the salt leaching method, and with the 

addition of an incubation step the mechanical properties can be tailored as well (Chen et 

al., 2003). Incubation of the scaffold allows the microspheres to fuse together, wherein 

the polymer chains relax and entangle with neighboring chains. Additionally, the 

microsphere composition results in a wide range of scaffold types and properties. 

Depending on the scaffold composition, the degradation time can vary from weeks to 

months, which will also influence the release profile of drug/growth factor that may have 

been encapsulated. All aspects of the scaffold (size, shape, composition, incubation 

temperature) can be manipulated to achieve an array of design criteria.  

Thus, PLGA scaffolds can be fabricated to have characteristics similar to those of 

the implant site by altering polymer chemistry, pore size, and overall porosity. The idea 

behind this approach is that, by implanting a scaffold that has the same microstructure 

and mechanical properties as the site of implantation, the cellular responses will be a 

desired, natural response (Willie et al., 2010). For example, PLGA and PGA have been 

used to create an external sheath for vein grafts, matching the mechanical properties 

necessary to sustain the mechanical loading of the physiological conditions (Liao et al., 

2007). While not able to fully replace the body’s functions, PLGA scaffolds have been 

used to replicate specific functions. Similarly, PLGA based scaffolds have been used to 

mimic bone matrix properties, such as cell interaction and composition, for better 

biocompatibility (Buschmann et al., 2012; Shen et al.). 

In the present study, the fundamental mechanical properties of microsphere-based 

PLGA scaffolds were investigated. The scaffolds consisted of microspheres fabricated 

from polymers having different molecular weights that were subsequently processed at 

different temperatures. All of these types of scaffolds can be fabricated with little 
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variation of the fabrication methods, making it an advantageous system to achieve a wide 

range of mechanical properties. The compressive modulus, degradation properties, and 

morphology play crucial roles in determining the capabilities of the scaffold system. 

Once the scaffold properties have been characterized, the scaffold can then be tailored to 

suit the needs of varying tissue engineering applications.  

3.2 Material and Methods 

3.2.1 Polymers 

Poly(lactic-co-glycolic acid) (PLGA; 50:50, acid-terminated; Durect Corporation, 

Pelham, AL) was used in this study. Two different molecular weights were used for the 

fabrication of the scaffolds, a lower molecular weight (LMW) of 5,500 Da and a higher 

molecular weight (HMW) of 30,000 Da as listed in Table 3.1.  

3.2.2 Microsphere Fabrication 

Two types of PLGA microspheres, designated uniform and blended, were 

prepared using the W1/O/W2 double emulsion technique, as seen in Figure 3.1. Uniform 

PLGA microspheres consisted of one molecular weight of polymer, either LMW or 

HMW. The blended microspheres had both polymer crystals (LMW and HMW) at a 

50:50 weight ratio.  The oil phase was made by dissolving PLGA at 13 wt/v% in 

dichloromethane. During the first emulsification, 10 v/v% PBS (W1) and polymer were 

emulsified by sonication at 25W for 10 seconds. This W1/O was added to aqueous 1% 

poly(vinyl alcohol) (PVA; Sigma-Aldrich, St. Louis, MO) and homogenized for 3 

minutes as the second emulsion at 3500 rpm.  The resulting microspheres were then 

allowed to stir overnight, after which they were washed with dionized water three times 

and then lyophilized. The microspheres were sieved, collecting only those that were <250 

µm for further use.  

3.2.3 Scaffold Fabrication  

Uniform scaffolds contained 100% of microspheres made from one molecular 

weight of polymer, either LMW or HMW. Mixed scaffolds contained a 50:50 weight 

ratio of LMW and HMW microspheres. Blend scaffolds contained 100% blended 

microspheres.  As  shown  in Figure 3.1,  the  microspheres  were  mixed  with  NaCl  at a  
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Table 3.1. Explanation of scaffold types by composition and incubation temperature.  
 

Scaffold Name Scaffold Compostion 
(%LMW: %HMW) 

Incubation  
Temp  
(°C) 

Low Molecular Weight 
(LMW) 100 0 42 

Blended 50 50 45 

50:50 50 50 49 

High Molecular Weight 
(HMW) 0 100 49 
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Figure 3.1. Schematic representation of scaffold fabrication. After mixing microspheres 
with the porogen, they were compressed and incubated at the Tg.  The solid sample was 
then salt leached and dried to result in a porous PLGA scaffold.  
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weight ratio of 40:60 (microspheres:salt) to obtain an overall porosity of approximately 

70% with interconnected pores (verified by microCT; see Morphology section) 

(Jabbarzadeh et al., 2012). The salt size was <150 µm, controlled through grinding and 

sieving. The microsphere-salt mixture was shaken by hand in a 0.6 mL microcentrifuge 

tube for 45 seconds and then poured into a 6 mm diameter die. A Carver press was used 

to compress the mixture into a disk at 1.5 ton for 2 minutes.  The compacted disks were 

placed into an incubator to fuse for 2 days. The glass transition (Tg) temperatures, used as 

the fusion temperatures, were determined using differential scanning calorimetry (DSC). 

The Tg for the HMW, LMW and blended microspheres was found to be 49, 37, and 45 

oC, respectively as listed in Table 3.1. The fusion temperature varied depending on the 

composition of the disk and is indicated for each test in later sections. The salt was 

leached from the fused scaffold into deionized water overnight on a stir plate. The final 

scaffolds had a mass of approximately 41 mg, disk diameter of 6.0 mm, and thickness of 

2.4 mm. 

3.2.4 Morphology 

The morphology of the scaffolds was studied by microcomputed tomography 

(microCT) using a Scanco µCT40 (SCANCO Medical, Switzerland).  At various time 

points throughout degradation, samples were imaged at 6 µm voxel resolution using scan 

parameters of 55 kV and 145 mA. One scaffold of each type was scanned in its dry initial 

state, five day degraded, 50% degraded, and 95% degraded, based on weight percentage. 

For the quantitative evaluation, a bone morphometry script was performed using a built-

in evaluation program (version: 6.0) with the threshold manually set from 21 to 132 to 

most closely match the physical structure of the scaffold. This evaluation reported total 

scaffold volume, porosity, and average pore size. To determine the pore size distribution 

and interconnectivity, a simulated mercury intrusion porosimetry script was used. This 

script reports the accessible volume for spheres of varying diameters, where the diameter 

is set from 0 to the largest radius of pore size reported.  

3.2.5 Degradation  

To measure degradation, samples were shaken at 37 °C in 4 mL phosphate-

buffered saline (PBS), pH7.4, which was changed every two to three days. At each time 
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point, three disks of each type were removed, lyophilized, and the remaining mass was 

measured. In addition, the volume was measured using digital calipers to monitor 

swelling.  

3.2.6 Gel Permeation Chromatography 

Molecular weight and polydispersity index (PDI) of the microspheres and 

degraded scaffolds were measured using gel permeation chromatography using a 

Shimadzu Prominence LC-20 AB HPLC system with a Waters 2410 refractive index 

detector and two columns (300 x 7.5 mm, 3 µm particle size, ResiPore; Agilent 

Technologies) in series. Polystyrene standards were used for calibration. Tetrahydrofuran 

(THF) was used to dissolve the samples at a concentration of 1 mg/mL, and samples were 

injected at a flow rate of 1.0 ml/min. A labSolutions software interface was used to 

calculate averaged molecular weights.  The samples tested were LMW, HMW and 

blended microspheres. Additionally, LMW, blended, 50:50, HMW scaffolds were tested 

at 5 days degraded, 50% and 80% degraded. Insufficient mass remained for analysis of 

95% degraded scaffolds.     

3.2.7 Mechanical Testing 

A Bose ELF 3300 mechanical testing system was used to determine the 

compressive modulus of dry samples as well as samples incubated in PBS for five days. 

Starting with no initial preload, samples were deformed at a rate of 0.06 mm/sec until the 

sample has been compressed approximately 1.5 mm. A stress-strain curve was plotted 

and analyzed to find the compressive modulus. Figure 3.2A shows a representative plot 

for a dry scaffold and where the slope was analyzed for the modulus. For the 5 day 

degraded scaffolds, the stress-strain curve had an initial linear region followed by a 

second linear region as seen in Figure 3.2B. Because of incomplete initial contact of 

degrading samples with the compression platen, the slope of the second linear region was 

used to determine the compressive modulus.  

3.2.8 Statistical Analysis  

Analysis was conducted using GraphPad InStat software using ANOVA followed 

by a Tukey–Kramer Multiple Comparisons Test. Results were considered significant if p 

< 0.05. 
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Figure 3.2. Representative stress-strain curves determined by testing (A) dry and (B) 5 
day degraded scaffolds. The black line overlaying the graph represents the region used to 
calculate the modulus.    

 

A	   B	  
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3.3 Results 

3.3.1 Degradation 

Figure 3.3 shows degradation curves for the different scaffold types fabricated. 

Scaffolds containing only LMW microspheres (0:100) degraded at a significantly 

(p<0.001) faster rate than the other scaffolds at 2.4% mass loss per day and were fully 

degraded in 40 days. The scaffolds containing only HMW microspheres (100:0) degraded 

at the slowest initial rate of 0.5% mass loss per day (p<0.001), while the blended and 

50:50 scaffolds degraded at 1.0% and 1.4% per day, respectively (p<0.05). Once the 

scaffolds reached 80% of their original mass, all scaffolds containing any amount of 

HMW microspheres degraded at a similar rate until only 20% mass remained; they were 

fully degraded by 120 days. The time it took to reach 5% mass loss was 15, 11, 5, <1 day 

for the 100:0, blended, 50:50 and 0:100 scaffolds, respectively. By the time the scaffolds 

were at 50% mass loss, a more distinct difference was apparent between the scaffolds, 

where the 100:0, blended, 50:50 and 0:100 scaffolds took 56, 45, 39 and 16 days, 

respectively, to reach this level of degradation (Table 3.2). 

3.3.2 Morphology 

Fusion of microspheres within the scaffolds was initially assessed by SEM 

(Figure 3.4).  Images showed that the internal structure of truly sintered scaffolds was 

consistent between scaffold types; dense, solid walls were apparent between the pores.  

Differences were apparent only when sintering did not occur, when incompletely fused 

microspheres were visible.   

In the initial dry state, all the scaffolds had similar morphology, with average pore 

sizes of 46, 48, 44, and 49 µm in the LMW, 50:50, blended, and HMW scaffolds, 

respectively (Table 3.2).  Initially, scaffolds sintered at or above the Tg looked the same 

(Figure 3.5A-C), regardless of the Tg values (LMW at 43°C, blended at 45°C, and HMW 

at 49°C). At day 5, the pore sizes began to differ as the various degradation rates took 

effect. The LMW scaffolds had the largest increase in pore size and porosity, while the 

HMW scaffolds experienced minimal change by day 5; the 50:50 and blended scaffolds 

were in between, as a trend of decreasing pore size can be seen in Figure 3.5D-F. At 50 

and 95%  degradation, the  LMW scaffolds  were too  fragile to  handle and  could not  be    
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Figure 3.3. Degradation (mass loss) curves for HMW 49°C (incubation temperature), 
blended 45°C, 50:50 49°C, and LMW 43°C scaffolds.  Data are shown as means ± 
standard error (n≥3). 
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Table 3.2. Time (days) to reach 5%, 50% and 95% mass loss for each scaffold type.  
 

  Time (days) to % mass loss 
(HMW:LMW) 5% 50% 95% 

100:0 15 56 115 
blended 11 45 115 

50:50 5 39 115 
0:100 <1 16 36 

 
 
 



www.manaraa.com

	   24	  

 
Figure 3.4. SEM images of (a) non-sintered and (b) sintered scaffolds. No difference was 
seen between the various scaffolds type, the one shown is a HMW scaffold. Sintering was 
done at 49°C (≥Tg) specific to the scaffold type.  The black arrow points to incompletely 
fused microspheres, and the white arrow points to a dense, fused portion of the scaffold.   
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Figure 3.5. MicroCT images illustrating the microstructure of degrading scaffolds’ 
fabricated using different compositions and fusion temperatures. To demonstrate the 
effect of incubation temperatures between scaffold types, structures are shown for LMW 
at 43°C (A), blended at 45°C (B), and HMW at 49°C (C). To show different scaffold 
types throughout degradation, D, E, are F are at 5 days degraded of the 50:50, blended, 
and HMW scaffolds, respectively, followed by H, I, and J at 50% degradation and K, L, 
and M at 95% degradation.  
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imaged. At 50% degradation, the 50:50, blended, and HMW scaffolds all showed an 

increase in pore size to 61, 47, and 63 µm, respectively, along with an increase in 

porosity to 82, 65, and 74%, respectively, from 55, 59, and 63% (Table 3.2).  The same 

scaffolds then experienced a decrease in pore size and porosity at 95% degradation. The 

50:50 and blended scaffolds behaved similarly to each other, and after reaching 50% 

degradation, their porosity and degradation time were comparable to those for the HMW 

scaffolds. The volumes reported in Table 3.3 show that the HMW scaffolds swelled the 

most at 50% degradation, with a 4.5-fold increase in volume from the initial dry state, 

while the 50:50 and blended scaffold had 3.5 and 2.9-fold increases, respectively. 

The simulated MIP analysis showed that the 50:50, HMW, and blended scaffolds 

had an accessible volume percentage (defined as a continual interconnectivity space of 

≥12 µm) of 99, 95, 99 for 5 day degradation, 99, 100, 99 for 50% degradation, and 96, 

94, 90 for 95% degradation, respectively.  

3.3.3 Gel Permeability Chromatography   

Initially, the LMW and HMW microspheres had molecular weights of 8.5±0.25 

and 40.7±2.5 kDa, respectively, both with a PDI of 1.7 (Figure 3.6). The blended 

microspheres had two initial molecular weights at 44.7±4.2 and 10.4±0.4 kDa..  Only one 

peak appeared for the blended and 50:50 scaffolds at 5 days and thereafter, having PDI 

values of 2.5 and 2.9, respectively. At day 5, molecular weights of polymer in all 

scaffolds were significantly different (p<0.001), with the blended and 50:50 scaffolds 

being relatively similar at 12.0±0.7 and 14.5±0.2 kDa, respectively, which was between 

the HMW and LMW scaffolds at 22.8±0.4 and 6.6±0.3 kDa, respectively. After 5 days, 

the LMW scaffolds were significantly lower than any of the other scaffolds (p<0.01). 

3.3.4 Mechanical Properties 

Figure 3.7 illustrates the effect of sintering temperature and scaffold composition 

on the compressive modulus of the scaffolds in the dry state. Increasing the sintering 

temperature above the Tg resulted in a statistically significant (p<0.001), nearly ten-fold 

increase in compressive modulus for all scaffold types. Results for the 0:100 scaffolds are 

shown at only 43°C since this is the Tg. In the initial dry state, there were no statistical 

differences  between   scaffolds   sintered  at   the  same   temperature,  even   though   the  
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Table 3.3. Morphology data for LMW, 50:50, blended and HMW scaffolds at the dry 
initial, 5 days degraded, and 50% and 95% degraded states. Data are not available for 
LMW scaffolds at 50 and 95% degradation because they were too fragile to handle.  
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Figure 3.6.  Molecular weight analysis of initial microspheres (used to form scaffolds) 
and throughout degradation of HMW, blended, 50:50, and LMW scaffolds. Initial results 
are not shown separately for the 50:50 scaffolds because they comprised 50% HMW and 
50% LMW microspheres, which were tested individually.  Data are shown as means ± 
standard deviation (n≥3). 
 



www.manaraa.com

	   29	  

 

!"
#!"
$!"
%!"
&!"
'!!"
'#!"
'$!"
'%!"

!("'!!"
)$*+,-"

./01202"
)$3+,-"

./01202"
)$4+,-"

4!("4!"
)$3+,-"

4!("4!"
)$*+,-"

'!!("!"
)$3+,-"

'!!("!"
)$*+,-"

!
"#

$%
$&
'(!

)*
+'

,!-./!-'

!" 

!" 

!# 

!# 

!$ 

!$ 

 
Figure 3.7. Compressive modulus of dry scaffolds made with different fusion 
temperatures, illustrating the significant effect temperature had on the mechanical 
properties. Data are shown as means ± standard error (n≥3).*1,2,3  p<0.001.   
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microsphere compositions were different. After the scaffolds had been degraded for only 

5 days and tested in their wet state, a statistically significant decrease in modulus was 

seen (p<0.001), and differences in the scaffold composition became apparent (Figure 

3.8). Scaffolds sintered at 49°C retained approximately 2 to 5.5% of the original 

modulus, while the scaffolds sintered at 43°C retained only 0.2 to 1.3% and were 

significantly lower than the dry state modulus (p<0.01) than at their wet state after five 

day degradation.  

3.4 Discussion 

3.4.1 Scaffold Fabrication  

The effect of PLGA molecular weight on mechanical properties was seen in the 

scaffolds that contained some amount of HMW microspheres, which increased the 

compressive modulus. Even during degradation, more structural integrity was retained in 

comparison to the LMW scaffolds, as quantified by the compressive modulus.  

Increasing the scaffold sintering temperature up to or above the Tg during the 

fabrication process allowed for increased molecular mobility of the polymeric chains that 

led to the microspheres fully fuse together around the porogen (NaCl crystals) to become 

a solid polymeric mass, whereas scaffolds sintered below the Tg likely only partially 

fused, leaving small voids in the material that acted as stress concentrators (Borden et al., 

2002). The dry compressive modulus of the LMW scaffolds, at 49 MPa, was higher than 

the 3.2 MPa modulus reported by Thomson et al. who tested a similarly porous PLGA 

(50:50) (MW 10 kDa) scaffold made from a PLGA matrix and gelatin porogen, similar to 

the salt leaching method, but the scaffolds were not sintered (Thomson et al., 1996).  This 

difference illustrates the significance of the added sintering step to fuse microspheres 

instead of simply compressing them together. Brown et al. used a solvent-based sintering 

method that wets the outside of the microspheres with solvent and allows for neighboring 

microspheres to join together. Varying the concentration of the solvent in the solution 

(low, medium, and high) resulted in different amounts of microsphere fusion within the 

scaffolds. The results showed that the compressive modulus increased with increasing 

levels of “sintered” microspheres. At the highest degree of sintering, however, there was 

a decrease  in the  modulus, likely  due to  the fusion  solution causing  dissolution of  the  
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Figure 3.8. Compressive modulus of five day degraded scaffolds made using fusion 
temperatures at or above the Tg. Data are shown as means ± standard error (n≥3). *1  
p<0.01 *2  p<0.001.   
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surface chains and leading to premature failure (Brown et al., 2008). The current method 

allows for full microsphere fusion of the scaffold around the porogen particles without 

loss of structural integrity, and it was not dependent on a solvent to sinter the 

microspheres equally. The proposed scaffolds can have an increased compressive 

modulus simply by increasing the molecular weight of the PLGA, and they also 

maintained a higher modulus throughout degradation by having a slower degradation 

rate, prolonging the time it will take to see a decrease in the modulus. Specifically, the 

presence of HMW microspheres in the blended and 50:50 scaffolds gave them a higher 

compressive modulus, and as the scaffold started degrading, the compressive modulus 

decreased due to LMW microsphere content. After five days of degradation, all of the 

scaffolds experienced a significant decrease in modulus, an important fact to consider 

depending on the intended site for implantation and the length of time needed for 

structural support. The LMW saw the highest loss of compressive modulus, followed by 

the blended and 50:50 scaffold, with the HMW scaffolds retaining the largest fraction of 

their initial modulus. Whereas muscle may take only approximately 10 days to 

regenerate, bone may take weeks or months (Lowry, 2006; Nettesheim, 1972).  

Once the scaffolds are implanted, they will start to degrade, and cells will begin to 

infiltrate through the pores. The intended site for implantation will determine the 

compressive modulus necessary. For a trabecular bone implant, a compressive modulus 

of 50-78 MPa would be necessary (Lotz et al., 1990; Shea et al., 2000), whereas for 

articular cartilage, the compressive modulus has been reported to be approximately 

0.079-2.1 MPa, depending on the location (Schinagl et al., 1997). The present study 

demonstrates that a wide range of compressive modulus can be obtained by varying the 

molecular weight of PLGA used and scaffold composition. The HMW scaffolds sintered 

at their Tg possessed a higher modulus and would be more suitable for higher load-

bearing sites in comparison to other polymer scaffold preparation methods. LMW 

scaffolds sintered at their Tg or HMW scaffolds sintered below their Tg would be suitable 

for bone implants. The implant site, however, would have to be an area of relatively low 

load bearing, such as the upper extremities or cranial region. The present scaffolds have 

compressive moduli similar to those of other reported polymer scaffolds fabricated for 

such implants (Liu et al., 2010; Wu et al., 2004). The blended scaffolds could potentially 
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be used in an epiphyseal plate fracture since their five day degraded compressive 

modulus is 2.0 MPa, compared to 0.25-0.48 MPa reported for various regions of the 

growth plate, will lend the necessary structural support for the implant site (Sergerie et 

al., 2009). 

3.4.2 Morphology 

The morphology of the scaffolds was influenced by the molecular weight and 

microsphere composition, and the scaffolds could be fabricated to have different pore 

size and porosity even at the same degradation time points. Initially the scaffolds had 

comparable microstructure and porosity. The addition of pores helped create a greater 

surface area and reduced the amount of acid build up in the scaffold (Fu et al., 2000). The 

scaffolds degraded through ester linkage hydrolysis, creating lactic and glycolic acid 

monomers and oligomers that can diffuse out of the scaffold or be carried out as liquid 

circulates through the porous scaffold. The LMW scaffolds degraded the quickest 

because they had the lowest molecular weight chains of all the scaffolds in this study, 

resulting in fewer ester linkages, along with a higher number of carboxylic end groups, 

which slightly increased acidity of the scaffold interior, all contributing to a faster 

degradation (Houchin et al., 2008; Tracy et al., 1999). By day 5, the pore size of the 

LMW was almost doubled, whereas the HMW pore size had hardly changed, illustrating 

the effect of the increased molecular weight that contributed to a slower degradation time 

and increased swelling. The increased porosity at day 5 in the 50:50 scaffolds over the 

rest of the scaffolds is thought to have resulted from particles breaking off the outer 

surface of the scaffold as a result of mixing different types of microspheres that have 

different degradation rates. Certain areas of the scaffold could be primarily LMW 

microspheres that degraded quicker, creating voids and weaker areas in the material that 

caused neighboring particles, especially HMW, to break off while being shaken during 

sintering. This was apparent in images of the 50:50 scaffolds, which showed less 

homogenous porosity compared to the blended scaffolds, while the HMW scaffolds 

showed the smallest change in pore size. Inconsistencies in porosity can be attributed to 

the fabrication method that relies on hand mixing of the microspheres and NaCl particles.   

A likely reason that the scaffolds containing HMW microspheres experienced 

significantly more swelling and maintained their swollen state longer is that they have 
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higher molecular weight polymer chains, and therefore more ester linkages, compared to 

the other microspheres. Furthermore, as the scaffolds containing HMW microspheres 

degraded, the entangled chains gradually loosened, and the accumulation of acidic 

monomers and oligomers entrapped in the polymer chains creating osmotic pressure and 

contributed to the swelling of the scaffold (Houchin et al., 2008; Kenley et al., 1987). At 

95% degradation, all that remained was the HMW microsphere content of each of the 

scaffolds.  

3.4.3 Gel Permeability Chromatography   

 The LMW scaffolds had a linear decrease in molecular weight throughout 

degradation, similar to the profile of LMW scaffold degradation. The HMW, blended, 

and 50:50 scaffolds (all containing HMW polymer) experienced a significant drop in 

molecular weight initially, likely due to the porous nature of the scaffold, and 

consequently increased accessible surface area, enabling accelerated bulk degradation.  

At 5 days, the HMW scaffolds maintained a higher molecular weight than the blended 

and 50:50 scaffolds, which was expected since the blended and 50:50 scaffolds contained 

50% of the LMW polymer initially. After the first 3 weeks, the HMW, blended, and 

50:50 scaffolds began to level off and became similar. At this point, the LMW polymer 

largely degraded, leaving the HMW component of each scaffold. As degradation 

continued, the chains became shorter and diffused out of the porous scaffolds, leaving 

only the longer chains that averaged approximately 10 kDa.  

3.4.4 Degradation 

PLGA hydrolysis takes place throughout the bulk of the material, not just at the 

surface (Burkersroda et al., 2002). This occurs at any place water can diffuse into, 

cleaving chains within the scaffold as compared to surface-eroding scaffolds that degrade 

one surface layer at a time. The rate at which the scaffolds degraded was dictated by the 

type of microspheres used for fabrication, allowing for degradation times from 40 days to 

120 days. The degradation rate is known to be accelerated in vivo (up to two times faster 

than in vitro), which should be taken into consideration for design of porous PLGA 

scaffolds (Zolnik et al., 2008).  The rate of degradation increased with the amount of 

LMW microspheres because of their shorter chain length and increased overall number of 
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carboxylic acid end groups, creating a more reactive, acidic environment. This trend can 

be seen by the increasing degradation rate going from 100:0 to 50:50 (HMW:LMW) or 

blended to 0:100 scaffolds. In the degradation study, the blended scaffolds were 

fabricated using a sintering temperature of 45°C, whereas the 50:50 scaffolds were 

sintered at 49°C but yielded similar degradation rates, a process that offers a new 

fabrication technique requiring a lower sintering temperature and yet still has the same 

overall degradation rate. There was a slight variance between the blended and 50:50 

scaffolds degradation as seen in the time it took to reach 5% mass loss, 11 and 5 days 

respectively. Similar to the difference in porosity between blended and 50:50 scaffolds at 

5% mass loss, the 50:50 scaffolds had some initial particle breakage, likely due to 

inconsistency of LMW and HMW microsphere mixing, that contributed to an increased 

initial mass loss as compared to the blended. The two scaffolds having a similar overall 

degradation rate could be advantageous should the scaffold be used as a drug delivery 

device either through the addition of a coating or encapsulating a drug/protein that is heat 

sensitive. Research on thermal degradation and heat shock proteins has shown that 45 to 

47°C is the temperature of permanent denaturation that cannot be reversed (Kampinga et 

al., 1995; Westra et al., 1971). For example, amylase is used for treatment of pancreatitis 

but starts to become denatured around 50°C, especially with extended time, which would 

make it difficult to encapsulate in the 50:50 or HMW scaffolds without compromising the 

bioactivity (Liang-chang et al., 1992; Yadav et al., 2009).  The time to reach 50% 

degradation increased with polymer molecular weight, as expected. By the time the 

scaffolds reached 95% degradation, their volume had decreased significantly, retaining 

only 3-5% of the volume seen at 50% degradation. What remained was the center part of 

the scaffold that had experienced the least amount of fluid exchange. Limited fluid flow 

ultimately decreased the degradation and swelling of the center most part of the scaffold, 

as reflected by the porosity and pore sizes that were similar to those seen initially and at 5 

day degraded.   

3.4.5 Mechanical Properties 

In comparing current mechanical results to other porous PLGA polymer scaffolds, 

the compressive modulus obtained here was significantly higher than scaffolds made with 

a variation to or entirely without the sintering step. Wu et al. reported a dry compressive 
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modulus of 7.7 MPa following a modified room temperature compression molding 

method to create a porous scaffold, where PLGA (85:15) microspheres were mixed with 

a porogen in solvent fusing the microspheres, as opposed to the present sintering method 

(Wu et al., 2004). Not only are their moduli lower by over ten-fold, the use of high 

concentrated solvents can be damaging to any encapsulated proteins (Asakura et al., 

1978; Wu et al., 2004). More similar to the methods used in this study, Lu et al. 

developed a PLGA (MW= 50,000 Da) scaffold out of microspheres made through 

W/O/W emulsion, followed by sintering at 70°C for 20 hours, to generate scaffolds 

having dimensions of 0.5 cm diameter and 1.0 cm in height.  These materials differed 

from the present scaffolds by the lack of compression resistance, varying processing 

temperature, time and scaffold dimensions. Lu et al. reported a compressive modulus of 

~26 MPa, an increase over solvent-based scaffolds, but still not as high as ~110 MPa 

obtained in the current study (Lu et al., 2003). Little information is published about the 

compressive modulus of degraded, porous, PLGA scaffolds tested in their wet state, 

which was used to simulate more of an in vivo environment. The present study shows the 

importance of reporting this data since only 5 days of degradation and testing the 

scaffolds in their wet state attributed to a significant decrease in compressive modulus.  

The effect of varying temperature and length of sintering time is shown in the 

work of Jiang and Laurencin, where the compressive modulus increased with temperature 

and time (Jiang et al., 2006). Their work showed how increasing the temperature from 

100 to 110 to 115°C, while maintaining a sintering time of 4 hours, will significantly 

increase the compressive modulus from ~232 to 341 to 429 MPa. Additionally, 

increasing the sintering time from 4 to 6 hours, while holding the sintering temperature at 

100°C, showed an increase in compressive modulus from 340 to 412 MPa.  

In order to improve the mechanical properties of biodegradable materials, some 

groups mix the PLGA scaffold with hyaluronic acid (HA), chitosan, poly(ethylene 

glycol) (PEG), ceramic fillers (Miao et al., 2007).  Addition of another material adds the 

complexity of fabrication, biocompatibility, and potentially higher sintering temperatures 

that would be damaging to any drug or protein in the scaffold (Jiang et al.; Popp et al.). 

Other methods are also employed to make PLGA scaffolds but are unable to obtain the 

compressive moduli presented. Gas foaming and salt leaching scaffolds with similar 
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porosity can only obtain a compressive modulus 100X lower than the current method 

(Harris et al., 1998; Nazarov et al., 2004).  

3.5 Conclusion 

The present study showed the significance of the sintering temperature and how 

the additional step of sintering at or above Tg changed the microstructure of microsphere-

based PLGA scaffolds by allowing for the microspheres to fuse together. Overall, a novel 

blended microsphere-based scaffold was developed that required only a 45°C sintering 

temperature while still maintaining a similar degradation rate to the 50:50 scaffolds, 

which required a 49°C sintering temperature. This could potentially be important when a 

heat sensitive drug or protein is encapsulated in the microspheres. Furthermore, the heat 

sintering step allowed for fusion of the microspheres, which played a significant role in 

determining the range of attainable mechanical properties. Properties similar to hard and 

soft tissue were obtained, expanding applicability of the scaffolds. The compressive 

moduli achieved here (~50-110 MPa dry and ~0.2-6 MPa for five day degraded), along 

with the degradation rates (40-120 days), can be tailored to fit a specific range as well, 

yet the fabrication method minimizes use of solvents and avoids high temperatures that 

would be damaging to encapsulated proteins or drugs. The only alterations needed during 

the fabrication process are molecular weight and sintering temperature. The present 

results show the versatility of a simple PLGA scaffold system that can be “tuned” to meet 

requirements for different tissue engineering applications.  
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Chapter 4 Retention of Insulin-like Growth Factor I Bioactivity during Fabrication 

of Sintered Polymeric Scaffolds 

4.1 Introduction 

Drug- or growth factor-encapsulating devices offer an alternative to localized 

injections or oral dosage forms and can help improve tissue repair at the site of 

implantation. Furthermore, fabricating a device (or scaffold) that is biodegradable and 

biocompatible eliminates the need for retrieval surgery or potential long-term effects, 

sometimes associated with metal-based implants (Black, 1984; McGee et al., 2000; 

Steinemann, 1996). While polymeric implants have certain advantages over metals, there 

are still some barriers in creating a polymeric drug delivery system. Some of the 

difficulties associated with encapsulating drugs or growth factors into a scaffold are 

controlling the drug loading and release rate while maintaining bioactivity (Ghaderi et al., 

1997; Lu et al., 1995; McCall et al., 2012; Steinemann, 1996; Tabata et al., 1993). By 

changing the material properties and scaffold fabrication technique, a balance between 

each of these difficulties can be reached. Fabricating the scaffold from polymeric 

microspheres allows for control over the drug loading by adjusting the amount of drug 

added and type of polymer used. Additionally, choosing a polymer that has a tunable 

degradation rate will allow control over the drug release rate when the drug or protein 

incorporated has a degradation-controlled release (e.g., macromolecules such as 

proteins). Finally, using a fabrication method that does not require extreme temperatures 

or harsh solvents can prevent loss of drug bioactivity.  

Poly(lactic-co-glycolic) acid (PLGA) is a material that possesses all the necessary 

properties to develop a drug delivery device. It has been used extensively to encapsulate 

hydrophilic and lipophilic drugs (Lee et al., 2004) and proteins (Benita, 2006) . PLGA 

systems are currently approved for drug delivery in the form of microspheres for the 

treatment of prostate cancer (Lupron Depot®) and endometriosis (Zoladex®). To alter the 

drug release rate and degradation time of the microspheres, the properties of PLGA can 

be changed. PLGA comprises polymeric chains made up of lactic and glycolic acid. 

Changing the ratio of lactic acid to glycolic acid, the end group terminating the 
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macromolecules, or the overall length of the chain (e.g., molecular weight) will affect the 

degradation time.  

Besides the already FDA-approved drug delivery systems, a wide range of 

research currently exists on encapsulating growth factors into scaffolds. Growth factors 

can be quite effective for tissue regrowth and can promote cell proliferation and 

differentiation. Insulin-like growth factor I (IGF-I) is a commonly used growth factor 

because it has the ability to increase proliferation of various cell types, such as 

mesenchymal stem cells, osteoblasts, and chondroblasts, that form new tissue. Studies 

showed that IGF-I increased bone growth and increased aggrecan and collagen-II content 

in vivo (Damien et al., 2003; Hock et al., 1988; McCarthy et al., 1989; Morisset et al., 

2007; Yun et al., 2007). Also, IGF-I soaked into cartilage disks caused an increase in 

matrix deposition and glycosaminoglycan (GAG) production (Guenther et al., 1982). For 

IGF-I to be effective, however, the bioactivity must not be comprised when the growth 

factor is being incorporated into an implant or scaffold. This area of research has been 

often overlooked, and the IGF-I bioactivity must be verified. Some scaffold fabrication 

methods require elevated temperatures, mechanical forces, and harsh solvents that could 

potentially denature proteins and compromise the bioactivity of an incorporated growth 

factor (Coleman et al., 2012; England et al., 2011; Yeo et al., 2001). Currently, IGF-I 

denaturation is mostly studied in agricultural research involving the proteins in cow milk 

and the effects of milk processing at temperatures exceeding 100°C, and these findings 

are not necessarily translatable to scaffold fabrication techniques (Collier et al., 1991; 

Yun et al., 2007).  

The objective of the present studies was to investigate whether incorporation of 

IGF-I into PLGA scaffolds formed by a microsphere sintering method compromised 

bioactivity.  Specifically, activity of IGF-I was measured after being heat-treated in 

solution and then again after it had been released from PLGA scaffolds. The scaffolds 

used in this study have been previously characterized (Clark et al., 2013), and their 

mechanical properties can be suitable for soft or hard tissue applications. Addition of 

IGF-I to the scaffolds would provide the potential to enhance tissue regrowth and reduce 

recovery time.   
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4.2 Material and Methods 

4.2.1 Microsphere Fabrication 

Poly(lactic-co-glycolic acid) (50:50, acid-terminated; Durect Corporation, 

Pelham, AL) with an inherent viscosity of 0.55–0.75 dL/g (molecular weight 

approximately 40 kDa) was used.  PLGA microspheres were fabricated using a 

water/oil/water (W1/O/W2) emulsion technique. Two types of PLGA microspheres were 

fabricated, blank and IGF-I-loaded, which differed only in the W1 phase. The W1 phase 

was phosphate-buffered saline (PBS), pH 7.4, for blank microspheres, whereas the W1 

phase for the IGF-I loaded microspheres contained 1.1 mg/mL IGF-I (PeproTech, Rocky 

Hill, NJ) in PBS, targeting a release of 2-20 ng/mL. For both types of microspheres, the 

oil phase (O) consisted of PLGA dissolved in dichloromethane (DCM) at 13wt/v%, and 

the W2 phase was made by dissolving 1% poly(vinyl alcohol) (PVA; Sigma-Aldrich, St. 

Louis, MO) into deionized water. W1 was emulsified into the O phase by sonication at 25 

W for 10 seconds. The W1/O was homogenized into W2 at 3500 rpm for 3 minutes.  The 

resulting microspheres were stirred overnight, washed six times in deionized water, and 

lyophilized. Only microspheres <250 µm were used for scaffold fabrication.  

4.2.2 Scaffold Preparation   

Scaffolds were fabricated using a salt-leaching method at a weight ratio of 40:60 

(microspheres:salt) (Clark et al., 2013).  The salt size was <150 µm, controlled through 

grinding and sieving. Each scaffold was weighed out individually into a 0.6 mL 

microcentrifuge tube and mixed by hand for 45 seconds. The mixture was then 

compressed for 2 minutes at 1.5 ton using a 6 mm diameter die in a Carver press. The 

scaffolds were then incubated for two days at 49oC, the glass transition (Tg) temperature 

of the PLGA used, which allowed for the microspheres to fuse around the NaCl particles. 

Lastly, the scaffolds were stirred in deionized water overnight to leach out the NaCl 

particles and dried the following day. The final mass of the scaffolds was approximately 

41 mg, with scaffold dimensions of 6.0 mm in diameter and a thickness of 2.4 mm, with 

an overall porosity of approximately 70%. Scaffolds were disinfected by washing in 70% 

ethanol and twice in cold PBS.  
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4.2.3 Encapsulation Efficiency and Loading  

Encapsulation efficiency was measured by dissolving microspheres in DCM and 

then adding acetone at a volume ratio of 3:7 (DCM:acetone) followed by centrifugation 

at 14,000 g for 5 minutes and discarding the supernatant. The sample was washed and 

centrifuged three times using the DCM/acetone mixture and then left overnight for 

solvent evaporation. The dried samples were rehydrated in PBS, and the protein 

concentration was measured using MicroBCA assay (Thermo Fisher Scientific, NJ) 

according to the manufacturer’s instructions.  

4.2.4 Release Study  

Scaffolds were placed in 12-well plates with 4 mL PBS and incubated at 37°C 

while on an orbital shaker. The supernatant was collected every 3-5 days and stored at -

20°C until analyzed. Before being assayed, the supernatant was concentrated using 

centrifugal filters having a molecular weight cutoff of 3,000 Da (Amicon Ultra; 

Millipore, MA) following the manufacturer’s instructions. The MicroBCA assay was 

then used to quantify the IGF-I concentration at each time point.  

4.2.5 Bioactivity Studies 

Two experiments were conducted to verify the bioactivity of IGF-I. First, the 

IGF-I activity was measured after incubated growth factor solutions at elevated 

temperatures for two days, and in the second, activity was determined as the IGF-I was 

released from the scaffolds during degradation. Before starting these experiments, effects 

of known concentrations of IGF-I (0-100 ng/mL) were examined to ensure samples were 

within the linear range of cell responsiveness to the growth factor. Both of the 

experiments used the same initial conditions, where SaOS-2 human osteosarcoma cells 

(ATCC HTB-85) were seeded in McCoy’s 5A medium supplemented with 10% fetal 

bovine serum (FBS; HyClone, ThermoScientific) at a density of 2.5x104 cells/mL and 

allowed to attach overnight.  

To test the bioactivity of IGF-I after being incubated at elevated temperatures for 

two days (which is experienced during scaffold fabrication, as described in the Scaffold 

Preparation section), an IGF-I solution with a concentration of 12 µg/mL in PBS was 

incubated at 37, 43, 45, 49, or 60°C for two days. A day after cell seeding, heat-treated 
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IGF-I solution was diluted into McCoy’s 5A medium containing 0.1% charcoal and 

dextran-treated fetal bovine serum (CDTFBS), which has reduced serum levels of growth 

factors, and added to the cells. The overall IGF-I concentration in medium was adjusted 

to 12 ng/mL, which pilot studies demonstrated was within the range of SaOS-2 

responsiveness. The positive control was an IGF-I solution with no heat treatment, and 

the negative control was incubated at 100°C.   

To measure the bioactivity of IGF-I released from the protein-loaded scaffolds, 

release supernatant was diluted in McCoy’s medium containing 0.1% CDTFBS to be 

within the linear range of the IGF-I dose response. The released supernatant made up 

15% of the total well volume. The same study was performed using unprocessed IGF-I to 

create a standard curve of expected cell proliferation based on a given IGF-I 

concentration.  

At the end of both experiments, cell proliferation was assessed by measuring 

DNA contents with a Hoechst assay adapted from Labarca et. al (Labarca et al., 1980). 

Briefly, each well was washed twice with PBS before salt solution (50 mM NaH2PO4, 2 

M NaCl, 2 mM EDTA) was added and sonicated for 10 seconds at 25 W. Hoechst 33258 

(Sigma-Aldrich) was added to a final concentration of 1.25 µg/mL, shaken, and left in the 

dark. Ten minutes later, fluorescence readings (λex= 356 nm, λem=458 nm) were taken. 

Bioactivity, reflected by cell proliferation, was expressed as a percentage of the effect of 

control treatments.    

4.2.6 Bone Marrow Stromal Cell Responses  

Bone marrow stromal cells were harvested from 40-45 days old Sprague-Dawley 

rats shortly after euthanization. The femurs were dissected and the epiphyses removed. 

The diaphyses were flushed with MEM, Alpha modification medium (αMEM; HyClone, 

ThermoScientific) containing 10% FBS and antibiotic-antimycotic solution (100 U/mL 

penicillin G, 100 µg/mL streptomycin, 250 ng/mL amphotericin B; HyClone, 

ThermoScientific). The cells were transferred to a flask and cultured. Once confluent, the 

cells were seeded onto either blank or IGF-I-loaded scaffolds at a density of 150,000 cells 

per scaffold with 4 mL of αMEM containing 0.5% transferrin and 0.05% sodium selenite. 

The wells were coated with 2% agarose to prevent cell adhesion	   on the polystyrene, 

which enabled measurement of cell activity on only the porous PLGA scaffolds. The 
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medium was changed every 2-3 days. After three and six weeks of culture, the scaffolds 

were washed twice with PBS and transferred to a 2 mL microcentrifuge tube and 

incubated with 300 µL Cell Lytic-M (Sigma-Aldrich, St. Louis, MO) for 15 minutes on 

an orbital shaker. Afterwards, the samples were centrifuged for 15 minutes at 12,000 g. 

The cell lysate was assayed according to the manufacturer’s instructions for DNA and 

GAG content using a Quant-iT© PicoGreen™ Assay (Thermo Scientific, NJ) and 

Blyscan™ Glycosaminoglycan Assay, respectively.  In addition, alkaline phosphatase 

activity was measured to assess pre-osteoblastic response. Briefly, the substrate consisted 

of 10 mM p-nitrophenyl phosphate in 0.6 M 2-amino-2-methyl-1-propanol buffer 

solution (pH 10) and just before use 4 mM magnesium chloride was added. In a 96-well 

plate the sample was mixed with the substrate at a 1:3 ratio (sample:substrate) and read at 

400 nm (Vreven et al., 1973).   

4.2.7 Statistics 

Analysis was carried out using GraphPad InStat software running ANOVA 

followed by a Tukey–Kramer Multiple Comparisons Test. Results were considered 

significant if p < 0.05. 

4.3 Results  

4.3.1 Encapsulation Efficiency and Loading 

The encapsulation efficiency of IGF-I in PLGA microspheres was found to be 

38±3% for a total loading of approximately 0.5 µg of IGF-I per mg of microspheres. 

Each scaffold contained 18-23 µg IGF-I.  As reported previously (Clark et al., 2013), 

initial porosity of the scaffolds was 63% with an average pore size of 49 µm. 

4.3.2 IGF-I Release 

Figure 1 shows the release of IGF-I from the scaffolds over time. In the first five 

days, there was an initial release of 1.28 µg IGF-I per day, followed by a decreased rate 

of 0.24 µg/day through day 10, after which it became 0.11 µg/day throughout the rest of 

the release. The scaffolds degradation was done previous where full degraded was 

reached at 120 days (Clark et al., 2013). 
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Figure 4.1. Cumulative release of IGF-I release from PLGA scaffolds. The dashed lines 
represent the range of expected drug release based on the loaded amount. Data are mean 
± standard deviation (n=3). Standard deviation is shown, ranging from 0.06-0.12 µg.  
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4.3.3 IGF-I Dose-Response 

To determine the concentration-dependent effect of IGF-I on cell proliferation, 

DNA contents were measured for SaOS-2 cells cultured with IGF-I at increasing 

concentrations. Figure 2 shows that IGF-I began to have an effect at 2 ng/mL and then 

reached the maximal effect around 20 ng/mL.  

4.3.4 Bioactivity of IGF-I 

  The bioactivity of IGF-I solutions was tested after incubation for two days at 37, 

43, 45, 49, 60 or 100°C. The solutions incubated at 37, 43, 45, and 60°C caused a 

statistically significant increase (p<0.001) of about a 140% in cell proliferation compared 

to cultures without growth factor (Figure 3). Proliferation in response to solutions that 

were not incubated (preserved at 4°C) or incubated at 37, 43, 45, 49, and 60°C was not 

significantly different. The negative control (100°C) was not statistically different than 

cells cultured without growth factor, indicating that heat treatment to 100°C eliminated 

IGF-I activity.  

Bioactivity of the supernatants collected throughout the period of degradation of 

IGF-I-loaded scaffolds was measured at the time points 1, 24, 31, 43, 57 days. The actual 

activity was compared to the expected activity based on mitogenicity of unprocessed 

IGF-I at the same concentration. The results are shown in Figure 4, where 100% activity 

indicates no loss of bioactivity. The percentages of expected activity (±SEM) were 97±6, 

110±8, 102±2, 100±8 and 91±4% at 1, 24, 31, 43 and 57 days, respectively, and were not 

statistically different from 100%.  

4.3.5 Bone Marrow Stromal Cell Responses  

Figure 5 shows that the encapsulation of IGF-I in microspheres caused an increase 

in DNA production at 3 and 6 weeks compared to the blank scaffolds. A statistically 

significant difference (p<0.01) was seen between the blank and IGF-I-loaded scaffolds at 

3 weeks with 4.1±0.7 and 10.6±2.3 µg of DNA and at 6 weeks with 4.0±1.0 and 5.08±0.9 

µg of DNA, respectively. There was an overall significant decrease in DNA between 3 

and 6 weeks for the IGF-I scaffolds (p<0.01) but not for the blank scaffolds.  The GAG 

content is shown in Figure 6, where no statistical difference was seen at 3 weeks between 

the blank  and IGF-I-loaded  scaffolds with 1.9±0.3 and 1.8±0.1 µg of GAG, respectively.   
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Figure 4.2. Concentration-dependent effect of IGF-I on cell proliferation measured by 
DNA content, showing a plateau after approximately 20 ng/mL. The dashed line 
represents the control where no IGF-I was added. Data are mean ± standard deviation 
(n=3). 
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Figure 4.3. Effect of heat-treated IGF-I solution on cell proliferation as measured by 
DNA content. The dashed line represents the DNA content in cells cultured without 
growth factor. IGF-I solution that had been incubated at increasing temperatures for 2 
days. Data are mean ± standard deviation (n=3).   
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Figure 4.4. Bioactivity of IGF-I in the release supernatant at increasing times scaffold 
degradation. Each time point was compared to the expected level of activity for the 
amount of IGF-I released at the respective time point.  Data are mean ± standard 
deviation (n=3).   
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Figure 4.5. DNA content after culturing BMCs on blank and IGF-I-loaded scaffolds for 3 
and 6 weeks.  Data are mean ± standard deviation (n=3). *1,2  p<0.001 
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Figure 4.6. GAG content after culturing BMCs on blank and IGF-I-loaded scaffolds for 3 

and 6 weeks.  Data are mean ± standard deviation (n=3). *1,2  p<0.001 
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After 6 weeks, the blank scaffolds showed no change in GAG content at 1.9±0.2 µg, 

while the IGF-I-loaded scaffold saw a significant increase to 3.2±0.8 µg of GAG 

(p<0.01).   AP activity did not increase between 3 and 6 weeks, and no significant 

difference was seen between scaffold types (results not shown).  

4.4 Discussion  

4.4.1 IGF-I Release 

PLGA has been widely used for drug delivery options in the form of microspheres 

and scaffolds (Cohen et al., 1991; Crotts et al., 1998; Makadia et al., 2011; 

Schwendeman, 2002). PLGA microspheres can be advantageous for injectable delivery 

due to their size, but they present more of a problem for extended release due to drug 

diffusion and the large surface area of microspheres. The release profile of PLGA 

microspheres commonly starts with an initial burst followed by a second phase of 

sustained release and then a third phase of a slower sustained released (Garcia et al., 

1999; Raghuvanshi et al., 1993). The initial burst release is caused by a combination of 

drug dissolution from microsphere surfaces and initial diffusion. The second phase is 

attributed to diffusion from deeper in the microspheres and initial matrix degradation, 

whereas the third phase is primarily due to matrix degradation.  

The amount of IGF-I released from microspheres during the initial burst usually 

accounts for a large portion of the overall loaded protein and can be an excessive amount, 

not necessary to see an effect and can possibly cause adverse effects such as swelling and 

joint aches (Nehrer et al., 1997). Approximately 20% of the IGF-I loaded in PLGA 

microspheres, using the same type of PLGA (50:50) polymer as in the present study, was 

released within the first 24 hours of a 13-18 day degradation time, releasing 1.1 to 2.2 µg 

of IGF-1 (Elisseeff et al., 2001; Meinel et al., 2001). IGF-I burst release also occurs in 

other scaffold types, such as tricalcium phosphate, which released 10-78% of the protein 

within 24 hours when degraded in water and serum, respectively (Laffargue et al., 2000). 

The present results, however, showed that sintering the microspheres into a scaffold 

reduced the 24 hour burst, with 20% release not reached until three days. The decreased 

burst release can also be attributed to the microsphere wash steps to remove surfactant 

and the salt leaching process, both of which reduced the amount of surface protein. 
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Altering the burst release will help prevent drug loss during the initial increase in blood 

flow around the implant site as a result of the inflammatory response (Guo et al., 2010).  

Other methods for decreasing the burst release from microspheres involve 

changing the polymer properties (molecular weight, end group, and lactic to glycolic 

ratio), polymer concentration, PVA concentration, the water phase volume, and 

homogenization speed during microsphere fabrication (Mao et al., 2007). Mao et al. 

evaluated each step of the W/O/W process and found that increasing the PVA 

concentration, homogenization speed, and drug loading or decreasing the water phase 

(W2) volume and drug molecular weight all caused a decrease in the burst release. 

Another way to avoid the burst is pre-degrading/washing the microspheres, and start the 

drug release after the initial burst (Hickey et al., 2002). However, this could be costly to 

waste expensive drugs or growth factors, and it reduces the amount of drug delivered. 

The present IGF-I loaded scaffolds released 50% of the IGF-I within the first 24 

days, which is a crucial time frame to allow for the development of new tissue ingrowth 

throughout the scaffold. New bone tissue can take 4 weeks to fill a non-critical size 

wound (Uematsu et al., 2005), and cartilage formation can take 2 weeks before GAG and 

collagen I and II production become apparent  based on histological staining for GAG 

chondrogenic markers (Veilleux et al., 2005). Capito et al. saw an effect of scaffold 

fabrication on DNA and GAG content at 2 weeks. Their collagen scaffold with and 

without crosslinking IGF-I plasmid into the scaffold resulted in no significant difference 

without the crosslinking. Additionally, they seeded 4 million cells onto their scaffold 

compared to the 150,000 cells in this study, which could be another factor in the non-

significant difference of GAG content with and without IGF-I (Capito et al., 2007).  

Techniques used to decrease the burst release from scaffolds include varying the 

internal porosity and microstructure of the scaffold. To alter the internal porosity of the 

microspheres, it has been shown that increasing the temperature during the second 

emulsion to 38-42°C resulted in a lower burst release, which may be a problem for drug 

bioactivity (Yang et al., 2000). For PLGA scaffolds, the burst release is also affected by 

the scaffold porosity, which increases surface area and allows for more drug diffusion. 

However, interconnected pores in a PLGA scaffold help prevent acid build up and allow 

for cell migration into the scaffold, improving tissue ingrowth (Fu et al., 2000). Using a 
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non-porous PLGA (50:50) system can have a negative effect on the implant site and 

inhibit new tissue formation (Rhee et al., 2007). The present scaffold fabrication method 

yielded an overall scaffold porosity of approximately 70%, yet eliminated the burst 

release (Clark et al., 2013).  

4.4.2 Bioactivity of IGF-I 

Some growth factors, such as vascular endothelial growth factor, transforming 

growth factor-beta and bone morphogenetic protein 2, have already been shown to 

maintain their bioactivity after heat treatment or solvent interaction (Gentry et al., 1990; 

Lawrence et al., 1985; Lyons et al., 1988; Schwarz et al., 2013; Winkler et al., 2006). 

Jabbarzadeh et al. incorporated vascular endothelial growth factor into sintered PLGA 

scaffolds and were able to show retained bioactivity (Jabbarzadeh et al., 2012).  

However, little is known about the effects that scaffold fabrication will have on IGF-I 

protein and the ability to maintain bioactivity. IGF-I encapsulated in PLGA retained 

mitogenicity.  The small amount loaded, which was appropriate for achieving 

physiologically relevant concentrations of the growth factor, was at least partially 

responsible for avoiding adverse effects because of solvent exposure.  Regarding the 

influence of temperature during scaffold sintering, most of the research surrounding heat 

treatment of IGF-I is in the agricultural sciences studying the protein in bovine milk 

during pasteurization. Collier et al. examined IGF-I denaturation after heat treatment at 

121°C for 5, 15, and 30 minutes and found that, after only 5 minutes, 93% of the IGF-I 

was unrecognizable and therefore considered denatured (Collier et al., 1991). Even heat-

treating IGF-I at 75 or 85°C for 15 minutes caused a decrease of 45 and 45.2%, 

respectively, in active IGF-I (Kang et al., 2006). Furthermore, the same group found that 

heating IGF-I to 121°C, resulted in no active IGF-I.  

The present study analyzed the temperature range of 37-60°C, which was used for 

scaffold fabrication. The temperatures were based on glass transition temperature of 

different types of PLGA used to fabricate the scaffold (Clark et al., 2013). After 2 days of 

incubation at these elevated temperatures, IGF-I retained full bioactivity as shown by the 

analysis of cell proliferation compared to non-heat-treated growth factor. Additionally, 

there was no effect from scaffold fabrication, involving the use of solvents, sonication, 

homogenization, and compression, on IGF-I bioactivity. Other types of PLGA scaffolds 
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containing IGF-I have been fabricated using solvents, but no heat treatment was used. 

Jaklenec et al. verified the bioactivity of IGF-I as it was released from scaffolds using a 

MCF-7 proliferation assay similar to the present methods (Jaklenec et al., 2008). The 

scaffolds were fabricated using dichloromethane vapor method, whereas the current 

method used temperature treatment to fuse the microspheres. Heat treatment (or 

sintering) allows for a 10-fold increase in mechanical properties compared to non-

sintered scaffolds (Clark et al., 2013). No mechanical properties were reported for 

scaffolds fabricated using solvent vapor (Jaklenec et al., 2008).  

4.4.3 Bone Marrow Stromal Cell Responses to Growth Factor 

Seeding cells on tissue engineering scaffolds allows cell infiltration and 

subsequent tissue responses.  For example, pore sizes of 20-120 µm have been shown to 

be appropriate for cell infiltration in scaffolds for hard and soft tissues regeneration (Lee 

et al., 2004; Nehrer et al., 1997; Sundararaj et al., 2012).  Although the present study 

focused on bioactivity measurements, we have previously demonstrated infiltration of 

cells into our scaffolds (Sundararaj et al., 2012). In the present studies, encapsulation of 

IGF-I into PLGA scaffolds increased cell proliferation. Prolonged release of IGF-I 

continued to have an effect on bone marrow stromal cells since there was a 2.6 fold 

increase at 3 weeks and a 1.3 fold increase at 6 weeks over blank scaffolds. In other 

studies, Longobardi et al. showed that IGF-I had an effect on chondrogenesis through 

increased cell proliferation, decreased apoptosis, and increased collagen II expression 

(Longobardi et al., 2006). Their findings on IGF-I dose-dependent cell proliferation were 

similar to the present data, which show that the IGF-I effect plateaued around 20 ng/mL.   

The DNA production between 3 and 6 weeks did not change for the blank 

scaffolds but significantly decreased in the IGF-I-loaded scaffolds, which was likely due 

to a combined effect of scaffold degradation, cell maturation, and scaffold saturation. 

Between 3 and 6 weeks, the scaffolds lost approximately 30% mass, for a total of 12.6 

mg, which accounts for a total of 57% of the total volume reported in previous studies 

(Clark et al., 2013). Normalizing the DNA content to milligrams of scaffold remaining, 

the IGF-I scaffolds had 0.28±0.06 µg of DNA per mg of scaffold at 3 weeks, 

significantly (p<0.01) more than the blank scaffolds had with 0.11±0.02 µg. The same 

trend was seen at 6 weeks, though not statistically significant, where the IGF-I-loaded 
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scaffolds had more DNA content per milligram of scaffold than the blank scaffolds with 

0.20±0.04 µg and 0.16±0.04 µg, respectively. The combined effect of scaffold mass loss 

and scaffold saturation can account for the similarity in DNA contents seen between the 

IGF-I-loaded scaffolds and blank scaffolds at 6 weeks, and it may not be due to a lack of 

IGF-I activity but rather a lack of space or surface area for cell proliferation. 

The increased cell content seen at 3 week did not cause an effect on GAG content, 

with no statistical difference in GAG content between the blank and IGF-I-loaded 

scaffolds. However, at 6 weeks the GAG content in IGF-I-loaded scaffolds was 1.7 times 

higher than that in the blank scaffolds. It has been reported that human marrow cells can 

take 2-4 weeks before showing chondrogenic markers or producing GAG, so it is 

possible that a difference in GAG content between the scaffold types may not be 

detectable at 3 weeks (Martin et al., 1998; Pittenger et al., 1999).  Lastly, it is relevant to 

note that alkaline phosphatase, commonly used as an indicator of early osteoblastic 

activity (Rajamannan et al., 2003; Van der Kraan et al., 2002; Weinreb et al., 1990), was 

not increased during the 6 weeks of culture of bone marrow stromal cells on either the 

blank or IGF-I-loaded scaffolds.    

4.5 Conclusion  

The present study demonstrated that sintering IGF-I-loaded, PLGA microspheres into 

three-dimensionally porous scaffolds allowed for the release of active IGF-I. Scaffold 

fabrication process and temperatures up to 49°C did not compromise the bioactivity of 

IGF-I. Cell proliferation was initially enhanced with the addition of IGF-I to the scaffold, 

which lead to an eventual increase in GAG production after 6 weeks. Additionally, the 

sintered scaffolds eliminated the typical initial burst release seen with PGLA 

microspheres. Preventing the burst release helps to reduce growth factor waste, avoid 

adverse effects possibly caused by a large localized dose of growth factor, and instead 

creates a long slow release (~120 days) that can aid in tissue repair and growth.   
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Chapter 5 Mechanical Properties and Dual Drug Delivery Application of PLGA 

Scaffolds Fabricated with a Poly(β-amino ester) Porogen  

5.1 Introduction 

Tissue engineering with the use of polymeric materials enables fabrication of 

Tissue engineering with the use of polymeric materials enables fabrication of scaffolds 

for various applications. Some polymers, such as poly(lactic acid), poly(glycolic acid), 

polycaprolactone, are biodegradable and biocompatible, which minimizes adverse 

physiologic responses to foreign materials in the body. The use of biodegradable 

polymeric scaffolds allows for cell ingrowth while the scaffold degrades over time, 

leaving only newly regenerated tissue at the site of implantation. To further promote 

healthy tissue growth and reduce recovery time, drug-containing scaffolds have become a 

popular option (Tabata, 2000; Zhang et al., 2013). Using scaffolds loaded with two drugs 

offers a multitude of combinations to invoke the appropriate tissue responses. 

Incorporating drugs into the scaffold provides a local delivery of the drug and reduces or 

eliminates the need for oral administration. Only 50% of patients take prescriptions 

properly, and even when taken correctly, some drug will be lost due to poor absorption 

and first-pass elimination (Martinez et al., 2002). Absorption is dependent on many 

physicochemical and physiologic factors, such as age, gender, health, concomitant 

medication, and transporter mechanisms (Martinez et al., 2002).  

Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable polymer that is already 

being used clinically in the form of microspheres and injected into the body for extended 

drug release. For example, ATRIDOX® is used in the treatment of periodontal disease, 

and Decapeptyl® SR is being used to treat endometriosis and liver and prostate cancer. 

The drug release rate from these polymer systems can be tailored to achieve various 

dosages by altering the material properties, such as molecular weight, end groups, and 

side chains (Fredenberg et al., 2011). Additionally, PLGA microspheres and scaffolds are 

being investigated for a variety of tissue engineering applications, including growth plate 

regeneration, bladder tissue repair, cartilage reconstruction, and diaphyseal bone growth 

(Pattison et al., 2005; Shin et al., 2006; Sundararaj et al., 2012; Yoon et al., 2007). PLGA 
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microspheres can be fabricated into scaffolds through many techniques, such as solvent 

evaporation, molding, and sintering (Clark et al., 2013; Makadia et al., 2011). These 

methods, however, require solvents, elevated temperature, and/or mechanical force, 

which can be problematic for incorporating a drug or protein into the scaffold because 

these conditions could cause deactivation or denaturation (Coleman et al., 2012; England 

et al., 2011). Incorporating bioactive molecules enables localized treatment at the implant 

site and can be used to promote desired tissue responses. 

Hydrogels are another promising family of materials for tissue engineering and 

drug delivery applications (Hoare et al., 2008). Poly(β-amino ester) (PBAE) hydrogels 

offer a wide range of properties, are biodegradable, and are cytocompatible (Hawkins et 

al., 2011). The degradation time can be adjusted from hours to months, while the 

mechanical properties can range from 4 to 350 MPa, simply by changing the type of 

diacrylate and amine used to synthesize the macromer (Anderson et al., 2006). Drug 

delivery is possible by mixing the active agent with the macromer before polymerizing 

the hydrogel, an approach that has been investigated for the delivery of paclitaxel 

(Meenach et al., 2012).  Additionally, degradation and drug delivery can be altered 

through the use of a hydrogel porogen entrapped in a hydrogel outer matrix (Hawkins et 

al., 2013). PBAE microspheres and nanospheres containing plasmid DNA have been 

made by a double emulsion/solvent evaporation technique (Pfeifer et al., 2005). 

Modifying PBAE with poly(ethylene oxide) (PEO) yields a system that undergoes pH-

sensitive degradation for treatment of tumors (Shenoy et al., 2005).  

Salt-leached scaffolds are made porous prior to use/implantation, which reduces 

modulus and strength (Pan et al., 2012).  Furthermore, these scaffolds typically allow 

delivery of a single biomolecule from the polymeric matrix (Makadia et al., 2011). 

Simultaneous or sequential release of two drugs can promote desired responses, whether 

it is reducing inflammation or promoting specific cell proliferation and differentiation. 

Some examples include apoptosis of tumor cells or the proliferation of chondroblast, 

myoblast and fibroblast in tissue regeneration (Baserga et al., 1998). Sequential release 

has been achieved using a layering system of films that degrade through surface erosion, 

one layer at a time (Sundararaj et al., 2013). Other methods have involved coating 

scaffolds that would yield one large burst release upon implantation or mixing different 
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types of microspheres together to release two drugs at the same time (Jaklenec et al., 

2008; Kempen et al., 2009).  

The objective of the present studies was to create a scaffold scaffold system 

comprising a PLGA matrix and different amounts of degradable PBAE porogen. The 

physical and mechanical properties were evaluated to determine the effects of different 

amounts of porogen on the scaffolds. Drug loading options and bioactivity were explored 

as well. To demonstrate the approach, ketoprofen and bone morphogenetic protein 2 

(BMP-2) were used because of their roles in controlling inflammation and endochondral 

bone formation, respectively. By characterizing the full spectrum of mechanical 

properties and drug release rates, scaffold design can be readily adjusted to meet the 

needs for different hard and soft tissue engineering applications.  

5.2 Materials and Methods 

5.2.1 Microsphere Fabrication 

Poly(lactic-co-glycolic acid) (50:50, IV: 0.55-0.75 dL/g, acid-terminated; Durect 

Corporation, Pelham, AL) microspheres were fabricated using a water/oil/water 

(W1/O/W2) double emulsion technique. For the first emulsion, 10% v/v phosphate-

buffered saline (PBS) was sonicated in a solution of 13% wt/v PLGA dissolved in 

dichloromethane (DCM). For the second emulsion, the above solution was homogenized 

into 1% poly(vinyl alcohol) (PVA; Sigma-Aldrich, St. Louis, MO) in deionized water. 

The resulting microspheres were stirred overnight, washed, and lyophilized. The 

microspheres were sieved, collecting only those <250 µm. PLGA microspheres 

containing BMP-2 (GenScript, Piscataway, NJ) were made the same way, except with the 

addition of BMP-2 to the PBS at a concentration of 0.25 mg/mL.   

5.2.2 Porogen Synthesis  

Hydrogel particles comprised a biodegradable PBAE. The macromer was 

synthesized through a step-wise reaction between poly(ethylene glycol) 400 diacrylate 

(Polysciences, Inc., Warrington, PA) and isobutylamine (Sigma-Aldrich) to make H6 

macromer (Anderson et al., 2006). Macromer then underwent chemically-initiated free 

radical polymerization with the addition of 2 wt% ammonium persulfate (Thermo Fisher 

Scientific, Bridgewater NJ), 50 wt% dimethyl sulfoxide (DMSO), and 2 wt% 



www.manaraa.com

	   59	  

tetramethylethylenediamine (Sigma-Aldrich). The macromer was added and vortex for 30 

seconds and then pipetted between two glass plates with a 1 mm spacer. The plates were 

placed in a sonication bath for 30 minutes and then left at room temperature for 48 hours. 

The gel was then removed, washed in ethanol overnight, and then air-dried. The gel slab 

was ground using a mortar and pestle to obtain particles that were sieved (<500 µm) for 

use as the porogen. Hydrogels loaded with ketoprofen (Sigma-Aldrich) were synthesized 

by adding drug to the macromer mixture at 10 wt%.  

5.2.3 Encapsulation Efficiency and Loading  

The encapsulation efficiency of BMP-2 in PLGA microspheres was measured by 

dissolving a fixed amount of polymer in DCM, adding acetone to a 3:7 ratio 

(DCM:acetone), and then centrifuging at 14,000 g for 5 minutes. After discarding the 

supernatant, and the sample was washed with the same DCM/acetone mixture and 

centrifuged three additional times. After evaporating solvent overnight, the sample was 

rehydrated in PBS, and the MicroBCA assay (Thermo Fisher Scientific) was performed 

to determine the protein concentration.  

To measure the ketoprofen loading in hydrogel particles, a fixed amount of gel 

was immersed in PBS for 7 days to ensure full degradation. Ketoprofen concentration 

was quantified by high-performance liquid chromatography (HPLC; Hitachi Primaide, 

Tokyo, Japan).  The mobile phase consisted of acetonitrile and 0.1% trifluoroacetic acid 

at a ratio of 60:40, with analyte separated on a Kinetix C18 column (Phenomenex, 

Torrance, CA).  Absorbance was read at 260 nm. The area under the peak was calculated 

and compared to standards to determine ketoprofen concentration.  

5.2.4 Scaffold Fabrication  

A fixed mass of PLGA microspheres (42 mg) was mixed with increasing amounts 

of hydrogel particles at weight ratios of 40:60, 50:50, and 60:40 (PBAE:PLGA) to yield 

samples having overall masses of 70, 84, and 105 mg, respectively. The mixture was 

gently ground using a mortar and pestle and then consolidated into a mold having 

dimensions of 2.4 mm height and 6 mm diameter. The mold was then incubated for 2 

days to allow samples to sinter. The sintering temperature was selected to be 49 °C, 
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which was the glass transition temperature of the PLGA used in this study, to allow 

fusion of the microspheres around the hydrogel particles.  

5.2.5 Microarchitecture 

Scaffold microarchitecture was assessed using microcomputed tomography 

(microCT; Scanco µCT40 SCANCO Medical, Switzerland).  To evaluate porogen 

degradation and development of porosity, scaffolds were incubated and shaken at 37°C in 

PBS, pH 7.4.  At 1, 2, and 5 days, the PBS was removed, and the scaffolds were 

lyophilized and analyzed. Scaffolds were also evaluated in their dry state before 

degradation. Samples were scanned at 55 kV and 145 mA and imaged at a voxel 

resolution of 6 µm. In order to quantify porogen degradation, the scaffold porosity and 

pore size was calculated using a built-in bone morphometry evaluation program (version: 

6.0).  

5.2.6 Degradation 

Degradation studies were conducted using 2 mL of PBS, pH 7.4, per scaffold on a 

plate shaker at 37°C. Mass loss from the scaffolds was measured over 120 days. For each 

time point, three samples of each type (40:60, 50:50, and 60:40 PBAE:PLGA) were 

removed, lyophilized, and weighed. The degradation was calculated by (end 

mass)/(initial mass) x 100%.  

5.2.7 Drug Release 

As for measurement of degradation, samples were incubated in 2 mL PBS, pH 

7.4, on a plate shaker at 37°C. At each time point, the supernatant was collected and 

replaced. To measure ketoprofen release, HPLC was used as described in the 

Encapsulation Efficiency and Loading section. To measure BMP-2, samples were 

concentrated using centrifugal filters with a molecular weight cut off of 3,000 Da 

(Amicon Ultra; Millipore, MA) following the manufacturer’s instructions, after which 

protein concentrations were determined using the MicroBCA assay. 

5.2.8 Compressive Modulus 

Compression testing was utilized to evaluate the modulus of samples in their 

initial dry state and after five days of degradation. Five days ensured that the hydrogel 
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porogen had degraded, leaving only the PLGA matrix. After incubation, samples were 

taken directly out of the PBS and evaluated. As reported previously (Clark et al., 2013), a 

Bose ELF 3300 system was used to test samples at a compression rate of 0.06 mm/sec 

until sample failure, approximately 1.5-2 mm of compression. A stress-strain curve was 

plotted and used to determine the compressive modulus of each sample type. 

5.2.9 Bioactivity Assay 

The bioactivity of released ketoprofen was determined using a COX Inhibitor 

Screening Assay Kit (Cayman Chemicals, Ann Arbor, MI). Bioactivity was expressed as 

the percentage of expected inhibitory activity, meaning that the inhibitory activity of 

release supernatants was compared to that of fresh ketoprofen at the same concentrations.  

The bioactivity of released BMP-2 was assessed by measuring alkaline 

phosphatase activity. Briefly, mouse myoblastic C2C12 cells (ATCC CRL-1772) 

cultured in Dulbecco's Modified Eagle Medium (DMEM; Thermo Fisher Scientific) with 

10% fetal bovine serum (FBS; Thermo Fisher Scientific) were seeded into a 48-well plate 

at 80,000 cells/mL and allowed to adhere overnight.  The medium was then replaced with 

DMEM containing 1% FBS plus release supernatants that had been centrifugally 

concentrated (3,000 Da MWCO). Five days later, wells were washed twice with PBS and 

lysed with 100 µL CelLytic M solution (Sigma-Aldrich) according to the manufacturer’s 

directions. The lysate solution was mixed at a 1:3 ratio with the substrate solution (4 mM 

MgCl2 and 10 mM p-nitrophenyl phosphate in 0.6 M 2-amino-2-methyl-1-propanol 

buffer, pH 10.0), and the absorbance at 400 nm was measured as a function of time. 

Alkaline phosphatase activity was normalized by DNA content, which was quantified 

using a Quant-iT™ PicoGreen® assay kit (Thermo Scientific) following the 

manufacturer’s instructions.  As for ketoprofen, bioactivity was expressed as percentage 

of expected activity based on fresh BMP-2 standard solutions.   

5.2.10 Statistical Analysis 

 ANOVA followed by a Tukey-Kramer multiple comparison test was performed 

using GraphPad InStat software to determine the significance of results. Results were 

considered significant if P < 0.05. 
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5.3 Results  

5.3.1 Protein and Drug Loading 

The BMP-2 microspheres had an encapsulation efficiency of 50±7% for a total 

loading of approximately 7.2 µg BMP-2 per scaffold. The hydrogel particles had a 

43±2% loading efficiency for an overall loading of 1.13, 1.55, and 2.06 mg of ketoprofen 

for the 40:60, 50:50, and 60:40 PBAE:PLGA scaffolds, respectively.  

5.3.2 Microarchitecture 

Figure 1 shows cross-sections of the different scaffold types in the initial dry state 

and after 1 and 2 days of degradation. Initially, all the scaffolds were a solid mass with no 

differentiation between the scaffold types. The porosity of the 40:60, 50:50, and 60:40 

after 1 day degradation was 66±3%, 67±3, and 74±5 (p>0.05), followed by an increase at 

day 2 to 79±2%, 82±4, and 87±3 (p>0.05), respectively (Figure 2). No statistically 

significant changes occurred between day 2 and 5, with porosities of 85±4, 81±1 and 

79±3% for the 60:40, 50:50, and 40:60 scaffolds, respectively. The pore size was not 

significantly different between the scaffold types or time points, with an average pore 

size of 142 ± 20 µm.  

5.3.3 Degradation  

Degradation profiles for the 40:60, 50:50, and 60:40 scaffolds are shown in Figure 

3. Part A shows degradation in terms of absolute mass.  Because all scaffolds started with 

the same amount of PLGA, no statistical differences in degradation rates were observed 

after the porogen degraded within the first two to three days. Part B shows degradation 

expressed as a percentage of mass remaining, which illustrates how the 40, 50, and 60% 

porogen loadings caused a 40, 50, and 58% mass loss by day 3, respectively. All 

scaffolds experienced a plateau once the porogen had degraded. At day 8, there were no 

statistically significant  differences  in mass,  with  38±2, 34±5, and  39±2 mg of  mass  
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Figure 5.1.Representative microCT images of the cross-sections of 40:60, 50:50, and 
60:40 (PBAE:PLGA) scaffolds in the initial dry state and degraded for 1 or 2 days. 
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Figure 5.2. Porosity of 40:60, 50:50 and 60:40 (PBAE: PLGA) scaffolds after 1, 2, and 5 
days of degradation in PBS. Data are shown as mean ± standard error (n≥3). *p<0.01 
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Figure 5.3. Degradation curves for 40:60, 50:50, and 60:40 (PBAE:PLGA) scaffolds 
shown as (A) absolute mass remaining and (B) percentage mass remaining. Data are 
shown as mean ± standard error (n≥3). 
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remaining for the 40:60, 50:50, and 60:40 scaffolds, respectively.  From day 8 to 15, the 

degradation rate was 0.5±0.1 mg per day, followed by a rate of 0.5±0.1 mg per day until 

scaffolds reached full degradation at day 70.  

5.3.4 Mechanical Properties  

Under unconstrained compression, the scaffolds did not exhibit a distinct failure 

point, but were flattened and spread outward because of the pliable, porous nature of the 

materials. The compressive modulus of as-prepared scaffolds decreased significantly 

(p<0.01) from 111±10 to 74±12 to 50±8 MPa with an increasing amount of porogen from 

40 to 50 to 60%, respectively (Figure 4). After 5 days of degradation, the 40:60, 50:50, 

and 60:40 scaffolds had moduli of 0.6±0.1, 1.1±0.2, and 0.7±0.2 kPa, respectively, with a 

statistically significant difference (p<0.01) between the 50:50 and other two scaffolds 

types.  

5.3.5 Drug Release 

For all scaffolds, ketoprofen was released at statistically similar rates in terms of 

the percentage of total drug loaded (Figure 5A). At 2, 4, 8, and 12 hours, the scaffolds 

had released 40±2%, 67±2%, 94±1%, and 99±0% of the total drug loaded, respectively. 

In terms of absolute dose, however, the amount of ketoprofen released varied 

significantly (p<0.01) by scaffold composition. For the first 4 hours, the 40:60, 50:50, 

and 60:40 scaffolds had rates of 185±10, 262±22, and 357±26 µg/hour followed by a 

slight decrease to 79±8, 100±18, and 130±48 µg/hour, respectively.  

All of the scaffolds released comparable amounts of BMP-2, 7.2±0.6 µg, with 

similar triphasic profiles (Figure 5B).  Significantly different release rates (p<0.01) were 

observed for each of the phases:  0.49±0.05, 0.15±0.02, and 0.02±0.007 µg/day for the 

initial (0-3 days), second (3-35 days), and third phases (35 to 70 days), respectively.   

5.3.6 Bioactivity 

Two hours into the release, the bioactivity of ketoprofen was found to be 

101±15%, 92±10%, and 104±8% of the expected activity for the 40:60, 50:50, and 60:40 

scaffolds, respectively, while at four hours, the bioactivity was 117±27%, 105±14%, and 

106±17% of the  expected activity for  the 40:60, 50:50  and 60:40 scaffolds, respectively  
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Figure 5.4. Compressive modulus of 40:60, 50:50, and 60:40 (PBAE:PLGA) scaffolds in 
their initial dry state and after 5 days of degradation (tested in their wet state). Data are 
shown as mean ± standard error (n≥3). *1,2,3  **1,2 p<0.01 
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Figure 5.5. Cumulative profiles for release of (A) ketoprofen and (B) BMP-2 from 40:60, 
50:50, and 60:40 (PBAE:PLGA) scaffolds. The dashed line represents the amount of 
expected BMP-2 release based on the loaded amount. Data are shown as mean ± standard 
error (n≥3). 
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(Figure 6A). Regardless of the scaffold type or varied concentration of ketoprofen, 

bioactivity was retained, and no statistical differences were found between the samples.  

BMP-2 bioactivity was measured at days 30 and 70 to determine whether activity 

was affected during degradation of the PLGA scaffolds (Figure 6B). Based on the 

alkaline phosphatase activity stimulated for each scaffold type, the percentages of 

expected activity were comparable, with 97± 3%, 95±4%, and 96±2% for the 40:60, 

50:50, and 60:40 scaffolds, respectively.  

5.4 Discussion  

5.4.1 Development of Porosity  

The initial state of all the scaffolds was a solid mass with negligible porosity, but 

porosity increased as the PBAE porogen particles began to degrade. The difference in 

porosity between the scaffolds was due to the difference of the porogen loading. The 

40:60, 50:50, and 60:40 scaffolds started with 42 mg of PLGA microspheres and 28, 42, 

and 63 mg of hydrogel particles, respectively. Within 1 day, the PBS infiltrated the 

scaffolds and hydrolysis began, causing degradation of the porogen (Hawkins et al., 

2013). After 2 days of incubation in PBS, the porogen particles were gone, as indicated 

by the mass loss results where about 40 mg remained for all types of scaffolds. Previous 

research involving porous PLGA scaffolds showed similar masses at 48 hours (Clark et 

al., 2013). The remaining mass was the PLGA matrix that degraded at a much slower 

rate, which was why none of the scaffolds experienced a significant change in porosity 

between day 2 and 5. At 1 and 2 days, however, the 60:40 scaffolds were more porous, 

likely due to the increased porogen loading that resulted in more PBAE particle surface 

area for the PLGA microspheres to surround. Without enough PLGA to fully surrounding 

the particles, areas within the scaffold had more neighboring PBAE particles that led to 

increased porosity. Initially, from day 2 to 15, the mass loss was slower as hydrolysis of 

the ester linkages occurred, but the chains were likely too long still to diffuse out. Later in 

the degradation process, from day 15 to 70, hydrolysis continued, and the matrix began to 

lose mass more quickly as the lactic and glycolic acid oligomers more easily diffused out.   

Utilizing the combined effect of a quick-degrading porogen and a porosity that 

allows for  rapid  aqueous  infiltration  is  advantageous  because  it will  not  impede  cell  
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Figure 5.6. Bioactivity of (A) ketoprofen and (B) BMP-2 released from the 40:60, 50:50, 
and 60:40 (PBAE:PLGA) scaffolds. Data are shown as mean ± standard error (n≥3).  
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migration into the scaffold. Once cells have entered the scaffold, tissue regrowth can 

begin. The measured average pore size of approximately 140 µm was smaller than the 

size of the PBAE particles used (<500µm), mostly likely due to the particles breaking up 

during the gentle grinding with PLGA microspheres during scaffold fabrication. 

Microspheres were likely embedded at the periphery of the particles, thereby decreasing 

the resulting pore size. Pore sizes above 100 µm have been shown to be appropriate for 

bone infiltration (Klawitter et al., 1976) and for growth of other tissues, such as skin and 

cartilage (Griffon et al., 2006; Yannas, 1992).   

5.4.2 Mechanical Properties 

For the as-prepared scaffolds, the increasing amount of porogen reduced the 

compressive modulus. This was to be expected because the hydrogel particles had a 

lower modulus than did the PLGA microspheres (Brey et al., 2008). Further proving this 

point, once the porogen had degraded, all scaffolds had similar compressive moduli, 

because they all contained the same amount of PLGA microspheres. The achievable 

range of modulus, 50-120 MPa, is comparable to properties of trabecular bone (50-78 

MPa) and would initially exceed the compressive modulus of articular cartilage (0.079-

2.1 MPa) until degradation occurred (Lotz et al., 1990; Schinagl et al., 1997). The larger 

decrease in modulus of the 60:40 scaffolds at 5 days could be attributed to the lack of 

microsphere fusion, and beyond 60% porogen loading, the modulus would be expected to 

continue to decrease as integrity of the scaffold is compromised. All of the scaffolds 

exhibited a decrease in modulus after 5 days of degradation, and although there was a 

statistical difference between the 50:50 scaffolds and the other two types, the difference 

represented <1% of the original modulus. In previous research using NaCl as the porogen 

that was leached prior to testing, the compressive modulus after 5 days was about 6 kPa, 

which was significantly higher than for the current scaffolds following degradation of 

PBAE porogen from PLGA matrix (Clark et al., 2013). A likely explanation is due to the 

natural swelling properties of the hydrogel that put added stress on the fused 

microspheres. The same PBAE hydrogel system (H6) has been shown to swell from 150-

400% within hours when unconstrained (Hawkins et al., 2011), but because the hydrogel 

particles are embedded as porogens, the PLGA matrix confines the particles and impairs 

their swelling. Thus, the internal walls of the PLGA matrix that support the scaffold will 
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experience stress as the hydrogel particles try to expand in aqueous solutions. This 

preexisting stress may cause the modulus to decrease since it would take less force to 

break the PLGA matrix. Additionally, the effect of “wetting” the scaffold (being 

immersed in PBS at 25 or 37 °C) has been shown to cause a decrease in compressive 

modulus. Wu et al. fabricated 88% porous PLGA scaffolds using a lower molecular 

weight (estimated at about 10 kDa; exact number not reported) than in the current study 

and found that wetting the scaffolds for only a few minutes in a vacuum system reduced 

the compressive modulus by almost 50% (Wu et al., 2006).        

5.4.3 Drug Release 

The encapsulation efficiencies obtained for ketoprofen in PBAE and BMP-2 in 

PLGA demonstrated that almost half of the drug remained in the material.  The 

percentage for BMP-2, however, was slightly lower than other reported values, ranging 

from 58-70% (Cleland et al., 1997; Yang et al., 2000; Yang et al., 2001).  The numerous 

wash steps to remove unreacted monomer from PBAE to avoid cytotoxicity and to 

remove surfactant from PLGA to enable fusion of microspheres allowed some of the drug 

and protein to diffuse from the scaffolds. 

Release of ketoprofen lasted approximately 12 hours. The release time and rate 

could be varied, however, by altering the degradation rate of the PBAE particles. By 

changing the diacrylate and amine, the degradation time can range from 7 hours to 4 

months (Hawkins et al., 2011). The H6 PBAE used for the present studies was selected 

for providing fast release of ketoprofen because it undergoes rapid swelling and 

hydrolysis.  The drug was completely released prior to full development of porosity, 

which indicates a prominent role of diffusive release. This behavior reflects bulk 

degradation, which has been modeled by many groups, as reviewed by Lin and Metters 

(Lin et al., 2006).  

After a scaffold has been implanted, the inflammatory response begins and 

neutrophils, monocytes, and macrophages become apparent in a matter of hours, making 

the initial early release of ketoprofen relevant (Ebara et al., 2002; Ricci et al., 2005). The 

purpose of the drug release from the porogen particles was to show a model for a small 

molecule drug (ketoprofen, 254 Da) that could also be applicable for the treatment of 

local inflammation without interfering with the cell ingrowth. Ketoprofen is FDA-
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approved for oral delivery by the brand names of Orudis® or Orvuail® at a much higher 

dose than seen in this study. The ideal amount of NSAID release for a localized treatment 

remains unknown, and more investigation would be needed to definitively answer the 

question. However, ketoprofen has been shown to reduce inflammation at concentrations 

as low as 100-130 µg/mL (Ricci et al., 2005). Inflammation will likely occur upon 

implantation of the present scaffolds as well as any others, and reducing, not eliminating, 

the magnitude of this response to prevent fibrous encapsulation could be beneficial. 

Using a localized treatment would eliminate the side effects seen with high oral doses of 

ketoprofen, such as gastrointestinal bleeding (Cabre et al., 1998). To tailor ketoprofen 

release for tissue-specific needs, the hydrogel particle drug loading, size, and amount can 

be altered, and even the hydrogel properties, such as composition and crosslink density, 

can be modified.  

The BMP-2 profile showed a much longer, slower release, lasting 70 days. The 

triphasic release profile observed is characteristic of PLGA scaffolds (Garcia et al., 1999; 

Raghuvanshi et al., 1993).  During this process, BMP-2 was initially released by 

diffusion, then a combination of diffusion and matrix degradation, and lastly by 

degradation alone. Release of macromolecules from PLGA has been extensively studied, 

and models proposed by Batycky et al. predict similar behavior to the release profiles 

measured in the present study (Batycky et al., 1997). The higher initial release of 490 ng 

BMP-2 per day should help the differentiation of surrounding mesenchymal cells into 

bone or cartilage cells, followed by a second phase of release of approximately 150 ng 

BMP-2 per day that will continue to affect cells recruited to the area (Inai et al., 2008; 

Pan et al., 2008). BMP-2 stimulates cartilage growth at concentrations from 10-200 

ng/mL (Li et al., 2004). Even at low concentration (10 ng/mL), BMP-2 created a 1.5 fold 

increase of glycosaminoglycans (GAG; used as a chondrogenic marker) content over 21 

days. For a higher concentration of 200 ng/mL, a 4-fold increase in GAG content was 

seen (Li et al., 2004). Similar findings were reported by Seykia et al., with a dose-

dependent increase in cartilage production from 10-500 ng/mL (Pond et al., 1984). The 

overall amount of drug released and the release rate could be altered by adjusting the 

drug loading and the PLGA properties, such as molecular weight or latic:glycolic ratio.   
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During the last phase of release from 35-70 d, only about 20 ng/day of BMP-2 

was measured, which will have less of an effect on the surrounding tissue.  Even in small 

doses, however, BMP-2 can continue aiding bone growth (Kuhn et al., 2013). Also, 

scaffolds are likely to degrade more quickly in vivo (Tracy et al., 1999), so a 70 d release 

may not be the case once inside the body. As for ketoprofen delivery, the dose of BMP-2 

could be increased by loading more protein into the microspheres used to fabricate the 

scaffolds.   

Achieving a dual drug release is favorable either to create a synergistic effect of 

two drugs or growth factors or to allow for two separate actions to occur (Nishiyama et 

al., 2006; Richardson et al., 2001). In the present study, two separate actions were 

targeted, reducing inflammation and enhancing tissue regrowth. In a different approach 

from the present polymer-polymer composites, a PLGA/β-tricalcium phosphate scaffold 

used two different types of drug-loaded microspheres for the treatment of bone 

regeneration, releasing dexamethasone and a model protein (bovine serum albumin) 

(Yang et al., 2011). The release rate for both drugs was similar over a 28-day period, in 

contrast to the initial rapid release followed by a second sustained release in the current 

work. Sequential release can be achieved using a layering method, varying microsphere 

fabrication methods to release encapsulated drug at different rates, and coatings (Jaklenec 

et al., 2008; Kim et al., 2008; Sundararaj et al., 2013). A three-layer system using 

poly(ether-ester) was used to model dual release, however the polymer, along with 

several other proposed systems, degraded in less than 35 days, which may not be long 

enough to complete bone or cartilage formation (Dahlin et al., 1988; Holland et al., 2007; 

Mason et al., 2000; Uematsu et al., 2005).  

Jaklenec et al. used fused PLGA microspheres encapsulated with insulin-like 

growth factor I and transforming growth factor-β1 to demonstrate combined release of 

both proteins starting at day 0, 7 or 10, and lasting 56 days. While their release time was 

longer, sequential release was not shown (Jaklenec et al., 2008). Kempen et al. showed 

sequential release from poly(propylene fumarate) scaffolds containing BMP-2-loaded 

PLGA microspheres and coated with gelatin hydrogel loaded with vascular endothelial 

growth factor (VEGF) (Kempen et al., 2009). The burst release of VEGF lasted 3 days, 

while the BMP-2 release was sustained for 56 days. Their results showed the benefit of 
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dual drug release comprised of an initial burst and a sustained release and the increased 

effect it had on bone formation. However, the scaffold fabrication methods were more 

complex and the scaffold was non-porous, which has been shown to improve cell 

ingrowth (Kempen et al., 2009; Van Tienen et al., 2002). To obtain a longer degradation 

time and give the scaffold mechanical integrity to make it suitable for soft tissue 

applications (Hawkins et al., 2011; Slaughter et al., 2009), the present scaffolds were 

compressed and sintered for two days, allowing for the microspheres to fuse together 

around the hydrogel particles. Because the scaffold is made from microspheres and 

particles, the overall design of the scaffold can be easily adjusted, which expands the 

options for scaffold uses.  

5.4.4 Bioactivity 

Importantly, there was no loss in the bioactivity of ketoprofen after experiencing 

scaffold fabrication, indicating that the use of solvents, elevated temperatures, and 

compression had no effect on the drug. Even though the recommended storage 

temperature for ketoprofen is 20-25°C, studies have shown thermal stability above 200°C 

(Tiţa et al., 2011). For this reason, it was to be expected that ketoprofen would remain 

bioactive after processing, and measurement of COX-2 inhibition confirmed this 

hypothesis. Additionally, ketoprofen is stable in solvents used to solubilize the drug and 

for emulsions used to fabrication microspheres (Barichello et al., 1999; Chi et al., 1991).  

BMP-2 showed similar results, with no loss of activity. Winkler et al. 

demonstrated that BMP-2 can be heat-treated up to 100°C without losing activity, which 

is much higher than the 49°C used to sinter the BMP-2-loaded microspheres in the 

present study (Winkler et al., 2006). Other groups have shown BMP-2 bioactivity after 

being encapsulated into PLGA microspheres (Kempen et al., 2008). The effect of solvent 

interaction and mechanical compression have also been studied, showing no loss of 

bioactivity (Schwarz et al., 2013). With the development of this novel scaffold, it was 

important to verify that the BMP-2 activity was not lost with the introduction of the new 

PBAE porogen material.  



www.manaraa.com

	   76	  

5.5 Conclusion  

The present study showed how porogen loading at different amounts affected the 

microstructure and modulus of PLGA scaffolds. Incorporating 40, 50, or 60 wt% of 

ketoprofen-loaded PBAE hydrogel particles adjusted the drug release concentration over 

a 12-hour period. Regardless of the loading amount, the long-term delivery of BMP-2 

encapsulated within the PLGA matrix was unchanged. Moreover, the results 

demonstrated that both the drug and protein released were still bioactive, unaffected by 

the scaffold fabrication technique. Localized delivery of ketoprofen and BMP-2 could 

help reduce inflammation and help regenerate tissue, respectively, potentially 

accelerating recovery. Degradable hybrid PLGA scaffolds enable the release of two drugs 

while maintaining the mechanical properties appropriate for different soft or hard tissue 

applications.   
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Chapter 6 Treatment to Regenerate the Proximal Tibia Growth Plate after Injury 

Using a Poly(lactic-co-glycolic acid) Based Scaffold  

6.1 Introduction 

The growth plate is a cartilaginous region of long bones that is responsible for 

bone growth, which continues until puberty when the influence of hormones causes it to 

close (Ballock et al., 2003; Burdan et al., 2009; Iannotti, 1990). In children 5-18 years 

old, 50% of them will experience a fracture, usually caused from trauma or playing 

sports. Of those fractures, an estimated 18% of the them will involve the growth plate, 

which can lead to angular deformation or stunted growth (Mizuta et al., 1987). A reported 

30-65% of growth plate fractures lead to some level of growth disturbance, depending on 

the type and location of the facture (Basener et al., 2009).  

The reason growth plate injuries are so detrimental is because the cartilage is 

unable to regenerate (Temenoff et al., 2000), which leads to the formation of bone at the 

place of fracture, referred to as a bony bar (or bridge) (Jaramillo et al., 1990). The bony 

bar act as a tether, where certain areas of the physeal line are unable to expand (Khoshhal 

et al., 2005). To prevent impaired growth, current treatment options involve removal of 

the bony bar and replacement with fat, muscle, polymeric silicone, bone wax, or bone 

cement as interpositional materials (Hasler et al., 2002; Tobita et al., 2002). The 

Langenskiöld method, first established in 1967, involves removing the bony bridge and 

replacing it with a free fat transplant and was shown to be a better alternative to 

osteotomy and limb lengthening (Langenskiöld, 1981). However, about 60% of patients 

who receive this treatment have fair to poor results, and approximately 30% of patients 

experience a reoccurrence of bony bar formation (Hasler et al., 2002).  

Current research for other treatment options largely surrounds the use of 

mesenchymal stem cells (MSCs). Li et al. reported an example using a chitin scaffold 

cultured with MSCs for 7 days and implanted in the medial half of the proximal growth 

plate of the tibia in 6-week-old rabbits after excision of the bony bar. The results showed 

a significant decrease in angular deformation and longitudinal discrepancy compared to 

the unoperated tibia (Li et al., 2004).  Similar results are seen in other work involving 

sodium hyaluronate/collagen or agarose scaffolds where limp length is improved, 

however, the drawbacks of this approach are that the MSC must first be harvested 
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requiring an additional surgery (Chen et al., 2003; Lee et al., 1998; Planka et al., 2008).  

The objective of this study was to regenerate the growth plate without using previously 

harvested MSCs but instead using BMCs taken out of the tibia during the same surgery of 

implanting the scaffold. The scaffolds used in this study were selected based on previous 

work that used the same polymer but with a lower molecular weight. Increasing the 

molecular weight would not only give more structural support but allow more time for 

the tissue to develop into a denser columnar structure capable of withstand the 

physiologic conditions. Additionally, the scaffolds were loaded with IGF-I, which has 

been shown to increase cell proliferation and increase glycosaminoglycan, a cartilage 

component, production over time (Clark et al., 2013).  

6.2 Materials and Methods 

6.2.1 Preparation of Microspheres  

Poly(lactic-co-glycolic acid) (PLGA; 50:50, IV: 0.55-0.75 dL/g, acid-terminated; 

Durect Corporation, Pelham, AL) microspheres were fabricated using a water/oil/water 

(W1/O/W2 ) double emulsion technique. For the first emulsion, 10% v/v phosphate-

buffered saline (PBS), pH 7.4, was used for the W1 phase, which was sonicated into the O 

phase at 25 W for 10 seconds. The O phase consisted of 13% wt/v PLGA in 

dichloromethane (DCM). After sonication the solution was homogenized into the W2 

phase, a solution containing 1% poly(vinyl alcohol) (PVA; Sigma-Aldrich, St. Louis, 

MO) in deionized water. IGF-I-loaded microspheres were made using the same method, 

expect with the addition of 1.1 mg/mL IGF-I (PeproTech, Rocky Hill, NJ) to PBS in the 

first emulsion (W1).  

6.2.2 Hydrogel Fabrication 

Poly(β-amino ester) (PBAE) hydrogels were made using a chemically-initiated 

free radical polymerization method. A step-wise reaction was used to synthesize H6 

macromer from poly(ethylene glycol) diacrylate (PEGDA; MW: 400  g mol−1; 

Polyscience, Warrington, PA) and isobutylamine (Sigma-Aldrich) (Anderson et al., 

2006). Based on the macromer weight, 2 wt% ammonium persulfate (Thermo Fisher 

Scientific, NJ) in 50 wt/vol% dimethyl sulfoxide (DMSO) with 2wt/vol% 

tetramethylethylenediamine (Sigma-Aldrich) was used to initiate polymerization. After 
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vortexing for 30 seconds, the polymer solution was pipetted between two glass plates 

with a 1 mm spacer and placed in a sonication bath for 30 minutes. After 48 hours at 

room temperature, the gel was washed in ethanol and dried. To make particles, the gel 

was ground using a mortar and pestle and sieved, collecting particles <500 µm.  

6.2.3 Scaffold Fabrication 

Three types of scaffolds were used in this study:  1) blank, 2) IGF-I-loaded, and 

3) hybrid. To fabricate the blank and IGF-I scaffolds, 120 mg of PLGA microspheres 

(<250 µm) were mixed with 180 mg of NaCl particles (<150 µm) and compressed in a 13 

mm diameter die at 7 tons for 2 minutes using a Carver press. The scaffolds were sintered 

for 48 hours at 49°C (the glass transition temperature, Tg) and then leached in deionized 

water overnight and dried. To fabricate the hybrid scaffolds, 120 mg of PLGA 

microspheres (<250 µm) were mixed with 120 mg of hydrogel particles and compressed 

in a 13 mm diameter mold while being sintered for 48 hours at 49°C. The final 

dimensions of all the scaffolds were 13 mm diameter and 1.2 mm height.  

For disinfection, each scaffold was placed in a 50 mL centrifuge tube and 

centrifuged at 200 g for 5 min in 5 mL of 70% ethanol followed by two wash steps with 

sterile PBS. The scaffolds were then dried in a laminar flow hood overnight.  

6.2.4 Animal Surgery 

Following an IGACUC-approved protocol fifteen New Zealand white female 

rabbits, 6 to 8 weeks old, were used in this study (Li et al., 2004). To simulate a growth 

plate injury, the medial one third of the proximal tibial growth plate was removed 

unilaterally using a 1.0 mm bur (Stryker Medical, Malvern, PA), as seen in Figures 6.1A 

and 6.1B. The wound was thoroughly irrigated with saline and closed using sutures.  

Radiographic images were taken of the first two animals to verify location of the growth 

plate defect and surgical technique. After three weeks, radiographs were taken of the 

lower limbs to confirm formation of the bony bar across the defect. The bony bar was 

then resected using the same procedure described previously, and an implant trimmed to 

fit the defect was placed in the site (Figure 6.1C).  Animals were assigned to one of five 

treatment groups:  1) fat, removed from the infrapatellar fat pad, 2) blank (without IGF-I) 

scaffold,  3) IGF-I-loaded  scaffold,  4) IGF-I-loaded  scaffold  with  cells,  and  5) hybrid  
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Figure 6.1. The site of implantation before (A) and after (B) growth plate removal. The 
black arrow indicates intact growth plate. (C) Trimmed and implanted scaffold (white 
arrow) following resection of the bony bar.  
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scaffold. For the fourth group, IGF-I-loaded scaffolds were seeded with bone marrow 

cells at the time of surgery (Figure 6.2). After removal of the bony bar, a syringe was 

used to collect bone marrow from the implant site and the diaphysis of the tibia, seeded 

onto the scaffold, and given 20 minutes for absorption. The animals were returned to their 

cages and allowed to move freely with no immobilization. After 8 weeks, the animals 

were euthanized and another radiograph was taken.  

6.2.5 Microcomputed Tomography 

At the end of the study, a 3-D reconstruction was created by microcomputed 

tomography (microCT) using a Scanco µCT40 (SCANCO Medical, Switzerland). 

Samples were imaged at 6 µm voxel resolution using scan parameters of 55 kV and 145 

mA. The reconstructions were used to qualitatively evaluate the ability of the scaffolds to 

prevent bone formation in and around the defect area.  

6.2.6 Anatomical Measurements  

The lengths of the medial and lateral tibiae and the widths of fibulae were 

measured for each lower hind limb. Also, using the radiographic images obtained at the 

time if implantation and euthanasia, the medial proximal tibial angle (MPTA) and lateral 

distal femoral angle (LDFA) were measured (Figure 6.3). All measurements were 

calculated using ImageJ software. 

6.2.7 Histological Analysis 

 After removal of the fibulae, the proximal tibiae were fixed in 10% buffered 

formalin for 2 weeks. Flagship Biosciences (Aurora, CO) processed the samples by 

bisecting them using the fibular insertion point to the opposite side as the reference point 

and then decalcified them in 10% formic acid. Coronal sections were cut at 4 µm 

thickness using a microtome and stained using hematoxylin and eosin. Stained sections 

were visualized and photographed using a Nikon Eclipse E600 microscope (Nikon) 

attached to a Nikon DN 100 digital camera (Nikon). 
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Figure 6.2. Bone marrow was harvested from the diaphysis (A), seeded on scaffolds (B), 
and absorbed into the scaffolds for 20 minutes.   
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Figure 6.3. Medial proximal tibial angle (MPTA) and lateral distal femoral angle (LDFA) 
shown on radiograph.  
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6.2.8 Statistical Analysis  

Analysis was carried out using GraphPad InStat software running an ANOVA 

followed by a Tukey–Kramer Multiple Comparisons Test. Results were considered 

significant if p < 0.05. 

6.3 Results 

6.3.1 Post-Operative Observations  

Two of the rabbits became infected after scaffold implantation, both in the IGF-

loaded scaffold group. An additional third rabbit in the cell-seeded, IGF-I loaded scaffold 

group showed signs of a possible infection but was treated with antibiotics.  

6.3.2 Microcomputed Tomography 

 A bisected reconstruction of each upper tibia is shown in Figure 6.4. Varying 

amounts of bone growth occurred in all of the non-infected limbs. Full closure was seen 

for all the hybrid scaffolds, indicating bone growth with no defined growth plate line 

visible on implant side (left side). There appeared to be some bone forming around the 

implant site in the other samples, especially in the blank and IGF-I-loaded scaffold 

groups. The small gap on the medial side, where the defect site was created, may indicate 

a presence of cartilaginous tissue.  

6.3.3 Anatomical Measurements 

The MPTA data are shown in Figure 6.5A.  All treatments resulted in an angle 

decrease 8 weeks after the implantation surgery. The lowest MPTA angle at 8 weeks was 

in the IGF-I-loaded scaffold group, which included the two infected animals. The next 

lowest was the fat implant group, followed by hybrid scaffold, cell-seeded IGF-loaded 

scaffold, and the blank scaffold. No statistical difference was seen between 3 and 11 

weeks or scaffold types. 

Figure 6.5B shows the LDFA results, ranging from 89.7 to 95.7°, where the fat 

implant group had the lowest angle, and the cell-seeded, IGF-loaded group had the 

highest angle 8 weeks after implantation. The blank scaffold group, IGF-I-loaded 

scaffold group, and hybrid scaffold group fell in between, with no statistical difference 

between any group.  
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Figure 6.4. Cut-plane microCT images of each tibia for the five treatment groups:  1) fat 
implant, 2) blank scaffold, 3) IGF-I-loaded scaffold, 4) cell seeded, IGF-I loaded 
scaffold, and 5) hybrid scaffold. The defects were on the medial (left) side and the native 
growth plate is on the lateral (right) side. The red asterisk indicates infected animals.  
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Figure 6.5. Medial proximal tibial angles (A) and lateral distal femoral angles (B) at 3 
weeks after growth plate injury (before resection of the bony bar) and 8 weeks after 
implantation of scaffold. Data are shown as means ± standard error (n≥3). 

A	  

B	  
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6.3.4 Histology  

 Figure 6.6 shows rabbit tibiae cut in the coronal plane 8 weeks after implantation. 

The remnant of the native growth plate can be seen on the right side of all the images (the 

lateral side; L), while the implant site can be seen on the left side (or medial side; M). 

Figure 6.6A shows a section from one of the right legs, which served as a control.  A 

distinct growth plate can be readily seen across the width of the tibia. Defects treated with 

fat grafts showed a dense region of bone tissue (stained pink and marked with an arrow) 

on the medial side where tissue had regrown (Figure 6.6B). A defect treated with a blank 

scaffold (Figure 6.6C) had a wider growth plate across the whole tibia than the fat graft.  

Treatment with IGF-I-loaded scaffolds with and without cells seeded resulted in a well-

structured growth plate on the lateral side (Figure 6.6D) and an increase in chondrocytes 

on the medial side. The addition of seeding cells resulted and a large, dense area of 

cartilage on the upper medial side containing mostly hypertrophic chondrocytes, seen in 

Figure 6.6E The porogen loaded scaffold (Figure 6.6F) caused similar results to those for 

the IGF-I loaded scaffold, with scattered pockets of chondrocytes.  

Magnified views of selected samples are shown in Figures 6.7-6.10, where the 

specific zones of the chondrocytes (reserve, proliferative, hypertrophic, or calcification 

zones) could be identified. The reserve chondrocytes were recognized by their smaller 

size, uniformly spherical appearance. Proliferative chondrocytes were observed more 

frequently in longitudinal columns with increasing volume of cytoplasm. Hypertrophic 

chondrocytes zone were identified based on their larger, spherical shape that eventually 

gave way to nuclear fragmentation as they entered the calcification zone. Figure 6.7 

shows the results of the fat implant with a thin, but continual, connection of cartilage 

(stained purple) that goes across the width of the tibia, where the presence of 

chondrocytes in the reserve (R), proliferative (P), hypertrophic (H) and calcification 

zones (C) were seen.  A defect treated with a blank scaffold had a thicker continual 

connection of chondrocytes (labeled in Figure 6.8B) with striations of cartilage below the 

growth plate area was observed, while the center of the tibia had thin patches of mostly 

hypertrophic chondrocytes. Treatment with IGF-I-loaded scaffolds had pockets of 

chondrocytes throughout the medial half of the tibia (Figure 6.9). The effect of a cell-

seeded, IGF-loaded scaffold is shown in Figure 6.10, with a large pocket of chondrocytes  



www.manaraa.com

	   88	  

 

Figure 6.6. Representative histological images of proximal tibiae with A) no implant,  B) 
fat implant, C) blank scaffold, D) IGF-loaded scaffold, E) cell seeded IGF-I loaded 
scaffold, and F) hybrid scaffold. For images B-F the defects were on the medial (left) side 
and the native growth plate is on the lateral (right) side. 
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Figure 6.7. Fat implant showed thin, continual line of cells across medial side that 
contained reserve (R), proliferative (P), hypertrophic (H) cartilage cells and calcification 
zones (C).  
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Figure 6.8. Blank scaffold on (A) the lateral side with columnar structure and (B) the 
medial side with the appearance of stacked (S), reserve (R), proliferative (P), and 
hypertrophic (H) cartilage cells.  

B	  

A	  
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Figure 6.9. IGF-I loaded scaffold showed dispersed pockets of cartilage cells throughout 
the medial side with the appearance of reserve (R), proliferative (P), hypertrophic (H), 
and degenerative zones (D).  
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Figure 6.10. IGF-I loaded scaffolds with cells showed a large dense population of 
chondrocytes on the medial side with the appearance of reserve (R), proliferative (P), 
hypertrophic (H), and degenerative zones (D). 
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on the upper medial side containing mostly hypertrophic chondrocytes with reserve cells 

surrounding the pocket (Figure 6.10). 

6.4 Discussion 

6.4.1 Post-Operative Observations 

The infection seen in three of the animals may be due to several possible sources 

for the infection, such as scaffold contamination, surgical technique or equipment, or 

animal tampering with the wound site.  

6.4.2 Polymer and Implant Selection 

 In this study the molecular weight of the PLGA was ~30 kDa, which was an 

increase compared to previous work (Sundararaj et al., 2012). Previously, a molecular 

weight of ~6 kDa molecular weight was used and it was thought that the scaffold 

degraded too quickly and that using a higher molecular weight would increase the 

structural support to the implant site and allow for more tissue regrowth to occur before 

the scaffold degraded away. Implantation of lower molecular weight PLGA scaffolds 

successfully resulted in the presence of chondrocytes after 2 weeks with an increase in 

chondrocytes population in rabbits treated with IGF-I loaded scaffolds.  

PLGA-based scaffolds were chosen because PLGA has been shown to be 

biocompatible and biodegradable (Kitchell et al., 1985; Shive et al., 1997). Drug delivery 

devices using PLGA microspheres are already FDA approved, such as, Lupron Depot®, 

Zoladex®, and Atridox®, for the treatment of prostate cancer, endometriosis, and fibroids. 

The mechanical properties of PLGA scaffolds were shown to be suitable for hard and soft 

tissue implants with a compressive modulus of about 100 MPa (Clark et al., 2013).  

 To evaluate the success of a polymeric scaffold for growth plate regeneration, a 

fat implant was chosen to represent current clinical practice by using the Langenskiöld 

method where the bony bar is excised and replaced with transplanted fat (Langenskiöld, 

1981; Langenskiöld et al., 1987; Tobita et al., 2002). Free fat transplants act as a space-

filler that slowly undergoes ossification in an attempt to prevent total growth plate 

closure, but results are fair to poor in ~60% of patients (Foster et al., 2000; Hasler et al., 

2002).  
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Growth factors have been theorized to enhance cartilage regeneration by 

increasing cell proliferation and decreasing cell apoptosis. Increasing cell proliferation 

using insulin-like growth factor I (IGF-I) can enhance bone and cartilage production in 

vivo (Damien et al., 2003; Hock et al., 1988; Lennox et al., 1983; McCarthy et al., 1989; 

Morisset et al., 2007; Yun et al., 2007). For this reason, IGF-I was loaded into the PLGA 

microspheres used to fabricate the scaffolds for this study. A recent study demonstrated 

retention of IGF-I bioactivity during scaffold fabrication (Clark et al., 2013). Seeding 

cells onto the scaffold was performed in an effort to add MSCs to the implant site directly 

instead of waiting for cell recruitment and proliferation during recovery. Hybrid scaffolds 

offer future possibilities for dual drug release and can be fabricated with little variation 

from the porous PLGA scaffold methods. Also, the hybrid scaffolds are able to maintain 

a similar compressive modulus to that of soft tissue.  

6.4.3 Anatomical Measurements 

 Growth plate injury causes a decrease in both the MPTA and LDFA post 

operative, and therefore the higher the angle, the better the recovery. The MPTA and 

LDFA were both lowest in the fat implant group (excluding the infected animals), and 

although results were not significant, this may indicate that the fat graft does not correct 

angular deformation as well as a polymeric scaffold. Surprisingly, the highest MPTA and 

second highest LDFA were seen in the blank scaffold treatment groups. A similar trend 

was seen in previous work during an 8 week study, where the blank scaffold group had a 

higher angle than the other treatment types, although results were not significant (Ravi, 

2009). It should be noted that all measurements were calculated by hand, which 

contributes to high standard deviations. Other groups have found a statistical difference, 

but their study lasted 4 months, twice as long as the current study.  Planka et al. used 

MSCs seeded onto sodium hyaluronate/collagen scaffolds in a distal femur model and 

found a 0.50 ± 0.04 cm increase in bone length and a LDFA lowered by 3.6-4.5° over the 

control (Planka et al., 2008). Their control was no implant as compared to the clinically 

relevant fat implant used in the present study. In previous work, a control group, which 

received no implant resulted in bone formation at the implant site 8 weeks post operation 

and showed the lowest amount of angular correction (Ravi, 2009).  
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Eight weeks after implantation, defects treated with MSCs showed a greater 

presence of chondrocytes, yet no culturing time or additional surgery was required to 

harvest the cells. Li et al. have shown that chitin-based scaffolds with and without MSCs 

corrected angular deformation significantly after 16 weeks, yet other studies showed an 

improvement with the use of MSCs compared to the scaffold alone (Li et al., 2004). Chen 

et al. used MSCs seeded on agarose, which resulted in increased angle recovery and tibial 

length, while the agarose alone gave poor results (Chen et al., 2003; Lee et al., 1998). The 

major difference between the mentioned scaffolds is the mechanical properties. Agarose, 

collagen, and hyaluronan are commonly used in tissue engineering but have a low 

compressive modulus in the 1-150 kPa range, whereas chitosan and PLGA scaffolds have 

a compressive modulus of 750 kPa to 100 MPa (Awad et al., 2004; Clark et al., 2013; 

Lee et al., 2001; Masters et al., 2005; Nazarov et al., 2004; Zhang et al., 2001).  

Within tissue engineering research, PLGA scaffolds with and without growth 

factors have been shown to create a microenvironment necessary for prolfieration and 

chondrogenic differentiation of MSCs (Foster et al., 2000; Hasler et al., 2002; 

Langenskiöld et al., 1987; Wattenbarger et al., 2002). Also, the PLGA scaffolds used in 

this study have a pore size of 50-100 µm, shown to be applicable for cell ingrowth 

(Griffon et al., 2006). Therefore, as long as some of the neighboring native growth plate 

cells remain or MSCs are around the defect site, the scaffold may be adequate to prevent 

bony bridge formation and allow for growth plate regeneration. Incorporating IGF-I or 

another type of growth factor into the scaffold may give the cellular signals necessary to 

initiate tissue regrowth as seen in the cells present at the implant site (discussed later).  

Although the angle measurements did not show complete correction of the limb 

deformation, microCT images showed that bone had not completely filled the implant 

site, indicating that bony bar reformation was inhibited. Bony bar formation is one of the 

major complications associated with growth plate injures (Wattenbarger et al., 2002; 

Xian et al., 2004). Limb length discrepancy and angular deformation occurred in 58% of 

distal femur factures involving the growth plate (Basener et al., 2009). Even with the 

current clinical treatment of fat grafts, bony bridge reformation has been shown to occur 

nearly 30% of the time (Hasler et al., 2002). Johnstone et al. used a type I collagen paste 



www.manaraa.com

	   96	  

containing osteogenic protein-1 and found promising limb growth until bony bridge 

formation prevented further growth (Johnstone et al., 2002).  

6.4.4 Histology 

 In this study, the attempt to regenerate the growth plate did not result in columnar 

structure to the degree that the native growth plate has, regardless of the treatment type. It 

appeared that the fat implant allowed for some cartilage regeneration, but it was only a 

cell wide at most points and most of the chondrocytes were in the calcification zone. The 

tissue surrounding the cartilage areas was woven bone, which has been known to appear 

after fractures (Hernandez et al., 2004; Shefelbine et al., 2005). The blank scaffold 

treatment resulted in tissue having a similar structure to that for the fat implants with a 

couple exceptions. First, there were a few areas where blank scaffolds had been placed 

with some cellular stacking, and secondly, the lateral side retained more structure, 

resembling that of the native growth plate, compared to defects treated with fat graft. The 

blank scaffolds gave the epiphyseal region more structural support, preventing further 

collapse of the lateral growth plate, while the fat graft implant had a thinner growth plate 

region across the whole tibia.    

The defects treated with IGF-I-loaded scaffolds, both with or without seeded 

cells, showed a similar appearance on the lateral side as that of the blank scaffold group, 

however the medial sides were quite different. Without cells, the IGF-I-loaded scaffold 

resulted in pockets of chondrocytes throughout the medial side along the epiphyseal line 

that contained cells in all zones of cartilage development. The addition of cells created a 

large vertical pocket (~3 mm long) of chondrocytes located in the upper epiphyseal 

region. Interpretation of the IGF-I loaded samples was limited because only one sample 

could be used for observation so it is difficult to say if this cellular organization would 

occur again. The cells were mostly in the hypertrophic state and had no columnar 

organization. Both types of IGF-I loaded scaffolds (with and without cells seeding) 

increased the density of hypertrophic chondrocytes compared to the fat, blank, and hybrid 

scaffolds. Cells seeded on scaffolds containing IGF-I created the largest population of 

chondrocytes, which was to be expected based on the extensive literature surrounding 

IGF-I (Anderson et al., 2006; Clark et al., 2013; Hernandez et al., 2004; Kitchell et al., 

1985; Lennox et al., 1983; Sundararaj et al., 2012). One such example is Masters et al., 
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who showed that IGF-I can mediate bone marrow cells in chondrogenesis through 

increased cell proliferation and chondrocyte markers (Masters et al., 2005).  

 Compared to the study of Chen et al., which that lasted for 16 weeks, the 

histological results for this 8 week study are encouraging, having similarity in the types 

of cells present, albeit without columnar structure (Chen et al., 2003). Without MSCs, the 

hyaluronate/collagen, agarose, and chitin scaffolds had either similar hypertrophic 

pockets of chondrocytes or minimal presence of chondrocytes at all (Chen et al., 2003; 

Lee et al., 1998; Li et al., 2004; Planka et al., 2008). However, the use of MSCs seeded 

on the chitin or agarose scaffolds gave more of a columnar structure but had twice as 

much time to develop compared to samples in this study (Li et al., 2004).  

6.5 Conclusion 

The goal of this study was to develop a biodegradable scaffold to regenerate the 

growth plate without the use of previously harvested MSC. Using cells harvested from 

the tibia during surgery showed improvement over treatment with the scaffold implant 

alone, and avoided the invasive, costly procedure of harvesting MSCs from the iliac crest. 

All the PLGA scaffolds led to better retention of the lateral native growth plate compared 

to the current clinical treatment of using fat grafts. Incorporating IGF-I into the scaffolds 

increased the presence of chondrocytes at the defect site. Further enhancement of 

cartilage formation was observed with the addition of bone marrow cells collected at the 

time of the surgery to IGF-I-loaded scaffolds. Although the angular deformation did not 

recover significantly after 8 weeks regardless of the treatment type, the histological 

results indicated the necessary cells were present and perhaps more time was necessary to 

see an effect in overall growth plate regeneration. This study showed that adding 

mechanical support to the implant site helped retain more native growth plate. 

Additionally, chondrocyte population could be increase using a growth factor and tibia 

BMCs, offering a better alternative to current clinical treatment and a different perceptive 

than current research.  
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Chapter 7 Summary and Conclusion  

In this dissertation, a variety of PLGA scaffolds were developed and 

characterized. Porous PLGA scaffolds were made to be suitable for soft or hard tissue 

applications by tailoring the salt leaching method and adding a microsphere fusion step 

during the scaffold fabrication process. Significant mechanical properties were 

maintained longer and increased degradation times were possible with scaffolds that had 

been fused. Additionally, a novel blended microsphere was created by mixing two 

molecular weights during microsphere fabrication. This scaffold required a lower fusion 

temperature than a scaffold made from a 50:50 mix of HMW and LMW microspheres, 

advantageous for drug encapsulation.  

To characterize the drug delivery and in vitro properties, the HMW scaffold was 

loaded with a growth factor. To show the applicability the scaffold has for soft tissue 

applications, IGF-I was used, which also lead to significant findings on the thermal 

stability of IGF-I. The bioactivity of IGF-I was retained through heating, compression 

and solvent interaction, which had not previously been published to our knowledge. The 

tri-phasic release of IGF-I was able to create an increase in bone marrow cell 

proliferation after 3 weeks, and a GAG content increase after 6 weeks. To further expand 

the drug delivery capabilities, a hybrid scaffold was developed, fabricated from PBAE 

and PLGA. Using a quick degrading PBAE created a 12-hour drug release and a 48-hour 

porogen degradation period, leaving a porous PLGA matrix. Adding PBAE particles at 

varying amounts resulted in the same drug release rate from both the PBAE particles and 

the PLGA matrix. 

To investigate the potential clinical application of the PLGA scaffold, an in vivo 

study was performed. Treatment of growth plate injuries is an area of pediatric 

orthopedics that could use improvement. The blank PLGA proved to be just as effective 

as the current clinical treatment and with the addition of IGF-I and cell seeding, collected 

at the time of surgery, there was an increase in growth plate cells (chondrocytes). This 

method is preferable over other research options, which require harvesting and culturing 

cells weeks before the growth plate surgery. Though the results did not show total growth 
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plate regeneration, the necessary cell types were present and there is potential to improve 

upon these methods.  

Potential options in future work may be to prolong the degradation and growth 

factor delivery time. Prolonging the degradation will give the BMCs more time to 

migrate into the scaffold and proliferate into growth plate type cells and structure. 

Increasing the degradation time would also increase the release time of IGF-I that would 

help the BMCs proliferate. Also, the cells collected during the time of surgery offered 

promising results and could be further investigated. Doing further in vitro studies on 

varying cell densities of BMCs on drug loaded scaffolds would be beneficial to knowing 

how many cells should be collected during the time of surgery.  

Overall, the work presented here shows that porous, microsphere-based PLGA 

scaffolds can be fabricated to have a diverse rage of degradation and mechanical 

properties using varying fusion temperatures. A single or dual drug delivery can be 

accomplished by introducing a porogen without affecting the bioactivity of the drug or 

protein. In vitro and in vivo studies demonstrated the scaffold’s use for cartilage 

regeneration and clinical relevance.  
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